Merge branch 'develop' into warpctc

avx_docs
Liu Yiqun 9 years ago
commit 46ef2bc694

@ -0,0 +1 @@
.gitignore

1
.gitignore vendored

@ -8,3 +8,4 @@ build/
.cproject
.pydevproject
Makefile
.test_env/

@ -1,10 +1,6 @@
cmake_minimum_required(VERSION 2.8)
project(paddle CXX C)
set(PADDLE_MAJOR_VERSION 0)
set(PADDLE_MINOR_VERSION 9)
set(PADDLE_PATCH_VERSION 0)
set(PADDLE_VERSION ${PADDLE_MAJOR_VERSION}.${PADDLE_MINOR_VERSION}.${PADDLE_PATCH_VERSION})
set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${CMAKE_SOURCE_DIR}/cmake")
set(PROJ_ROOT ${CMAKE_SOURCE_DIR})
@ -56,7 +52,7 @@ option(ON_COVERALLS "Generating code coverage data on coveralls or not." OFF)
option(COVERALLS_UPLOAD "Uploading the generated coveralls json." ON)
if(NOT CMAKE_BUILD_TYPE)
set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING
set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING
"Choose the type of build, options are: Debug Release RelWithDebInfo MinSizeRel"
FORCE)
endif()
@ -75,31 +71,11 @@ include(check_packages)
include(swig)
include(coveralls)
# add PaddlePaddle version
if(DEFINED ENV{PADDLE_VERSION})
add_definitions(-DPADDLE_VERSION=\"$ENV{PADDLE_VERSION}\")
else()
if(EXISTS ${PROJ_ROOT}/.svn/)
find_package(Subversion REQUIRED)
if(SUBVERSION_FOUND)
Subversion_WC_INFO(${PROJ_ROOT} Project)
add_definitions(-DPADDLE_VERSION=${Project_WC_REVISION})
endif()
elseif(EXISTS ${PROJ_ROOT}/.git/)
find_package(Git REQUIRED)
execute_process(
COMMAND ${GIT_EXECUTABLE} log -1 --format=%H
WORKING_DIRECTORY ${PROJ_ROOT}
OUTPUT_VARIABLE GIT_SHA1
RESULT_VARIABLE GIT_RESULT
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
if(NOT ${GIT_RESULT})
add_definitions(-DPADDLE_VERSION=\"${GIT_SHA1}\")
else()
message(WARNING "Cannot add paddle version from git tag")
endif()
endif()
endif()
# Set PaddlePaddle version to Git tag name or Git commit ID.
find_package(Git REQUIRED)
# version.cmake will get the current PADDLE_VERSION
include(version)
add_definitions(-DPADDLE_VERSION=\"${PADDLE_VERSION}\")
if(NOT WITH_GPU)

@ -0,0 +1,24 @@
# Get the latest git tag.
set(PADDLE_VERSION $ENV{PADDLE_VERSION})
set(tmp_version "HEAD")
while ("${PADDLE_VERSION}" STREQUAL "")
execute_process(
COMMAND ${GIT_EXECUTABLE} describe --tags --abbrev=0 ${tmp_version}
WORKING_DIRECTORY ${PROJ_ROOT}
OUTPUT_VARIABLE GIT_TAG_NAME
RESULT_VARIABLE GIT_RESULT
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
if (NOT ${GIT_RESULT})
# Check the tag is a correct version
if (${GIT_TAG_NAME} MATCHES "v[0-9]+\\.[0-9]+\\.[0-9]+(\\.(a|b|rc)\\.[0-9]+)?")
string(REPLACE "v" "" PADDLE_VERSION ${GIT_TAG_NAME})
else() # otherwise, get the previous git tag name.
set(tmp_version "${GIT_TAG_NAME}~1")
endif()
else()
set(PADDLE_VERSION "0.0.0")
message(WARNING "Cannot add paddle version from git tag")
endif()
endwhile()
message(STATUS "Paddle version is ${PADDLE_VERSION}")

@ -0,0 +1,11 @@
output/
uniform_params/
cifar_params/
mnist_params/
*.png
.pydevproject
.project
*.log
*.pyc
data/mnist_data/
data/cifar-10-batches-py/

@ -0,0 +1,13 @@
# Generative Adversarial Networks (GAN)
This demo implements GAN training described in the original GAN paper (https://arxiv.org/abs/1406.2661) and DCGAN (https://arxiv.org/abs/1511.06434).
The general training procedures are implemented in gan_trainer.py. The neural network configurations are specified in gan_conf.py (for synthetic data) and gan_conf_image.py (for image data).
In order to run the model, first download the corresponding data by running the shell script in ./data.
Then you can run the command below. The flag -d specifies the training data (cifar, mnist or uniform) and flag --useGpu specifies whether to use gpu for training (0 is cpu, 1 is gpu).
$python gan_trainer.py -d cifar --use_gpu 1
The generated images will be stored in ./cifar_samples/
The corresponding models will be stored in ./cifar_params/

@ -0,0 +1,18 @@
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set -e
wget https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
tar zxf cifar-10-python.tar.gz
rm cifar-10-python.tar.gz

@ -0,0 +1,19 @@
#!/usr/bin/env sh
# This script downloads the mnist data and unzips it.
set -e
DIR="$( cd "$(dirname "$0")" ; pwd -P )"
rm -rf "$DIR/mnist_data"
mkdir "$DIR/mnist_data"
cd "$DIR/mnist_data"
echo "Downloading..."
for fname in train-images-idx3-ubyte train-labels-idx1-ubyte t10k-images-idx3-ubyte t10k-labels-idx1-ubyte
do
if [ ! -e $fname ]; then
wget --no-check-certificate http://yann.lecun.com/exdb/mnist/${fname}.gz
gunzip ${fname}.gz
fi
done

@ -0,0 +1,134 @@
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
mode = get_config_arg("mode", str, "generator")
assert mode in set(["generator",
"discriminator",
"generator_training",
"discriminator_training"])
is_generator_training = mode == "generator_training"
is_discriminator_training = mode == "discriminator_training"
is_generator = mode == "generator"
is_discriminator = mode == "discriminator"
# The network structure below follows the ref https://arxiv.org/abs/1406.2661
# Here we used two hidden layers and batch_norm
print('mode=%s' % mode)
# the dim of the noise (z) as the input of the generator network
noise_dim = 10
# the dim of the hidden layer
hidden_dim = 10
# the dim of the generated sample
sample_dim = 2
settings(
batch_size=128,
learning_rate=1e-4,
learning_method=AdamOptimizer(beta1=0.5)
)
def discriminator(sample):
"""
discriminator ouputs the probablity of a sample is from generator
or real data.
The output has two dimenstional: dimension 0 is the probablity
of the sample is from generator and dimension 1 is the probabblity
of the sample is from real data.
"""
param_attr = ParamAttr(is_static=is_generator_training)
bias_attr = ParamAttr(is_static=is_generator_training,
initial_mean=1.0,
initial_std=0)
hidden = fc_layer(input=sample, name="dis_hidden", size=hidden_dim,
bias_attr=bias_attr,
param_attr=param_attr,
act=ReluActivation())
hidden2 = fc_layer(input=hidden, name="dis_hidden2", size=hidden_dim,
bias_attr=bias_attr,
param_attr=param_attr,
act=LinearActivation())
hidden_bn = batch_norm_layer(hidden2,
act=ReluActivation(),
name="dis_hidden_bn",
bias_attr=bias_attr,
param_attr=ParamAttr(is_static=is_generator_training,
initial_mean=1.0,
initial_std=0.02),
use_global_stats=False)
return fc_layer(input=hidden_bn, name="dis_prob", size=2,
bias_attr=bias_attr,
param_attr=param_attr,
act=SoftmaxActivation())
def generator(noise):
"""
generator generates a sample given noise
"""
param_attr = ParamAttr(is_static=is_discriminator_training)
bias_attr = ParamAttr(is_static=is_discriminator_training,
initial_mean=1.0,
initial_std=0)
hidden = fc_layer(input=noise,
name="gen_layer_hidden",
size=hidden_dim,
bias_attr=bias_attr,
param_attr=param_attr,
act=ReluActivation())
hidden2 = fc_layer(input=hidden, name="gen_hidden2", size=hidden_dim,
bias_attr=bias_attr,
param_attr=param_attr,
act=LinearActivation())
hidden_bn = batch_norm_layer(hidden2,
act=ReluActivation(),
name="gen_layer_hidden_bn",
bias_attr=bias_attr,
param_attr=ParamAttr(is_static=is_discriminator_training,
initial_mean=1.0,
initial_std=0.02),
use_global_stats=False)
return fc_layer(input=hidden_bn,
name="gen_layer1",
size=sample_dim,
bias_attr=bias_attr,
param_attr=param_attr,
act=LinearActivation())
if is_generator_training:
noise = data_layer(name="noise", size=noise_dim)
sample = generator(noise)
if is_discriminator_training:
sample = data_layer(name="sample", size=sample_dim)
if is_generator_training or is_discriminator_training:
label = data_layer(name="label", size=1)
prob = discriminator(sample)
cost = cross_entropy(input=prob, label=label)
classification_error_evaluator(input=prob, label=label, name=mode+'_error')
outputs(cost)
if is_generator:
noise = data_layer(name="noise", size=noise_dim)
outputs(generator(noise))

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

@ -1,122 +1,81 @@
Docker installation guide
==========================
Using and Building Docker Images
================================
PaddlePaddle provide the `Docker <https://www.docker.com/>`_ image. `Docker`_ is a lightweight container utilities. The performance of PaddlePaddle in `Docker`_ container is basically as same as run it in a normal linux. The `Docker`_ is a very convenient way to deliver the binary release for linux programs.
We release PaddlePaddle in the form of `Docker <https://www.docker.com/>`_ images on `dockerhub.com <https://hub.docker.com/r/paddledev/paddle/>`_. Running as Docker containers is currently the only officially-supported way to running PaddlePaddle.
.. note::
Run Docker images
-----------------
The `Docker`_ image is the recommended way to run PaddlePaddle
For each version of PaddlePaddle, we release 4 variants of Docker images:
PaddlePaddle Docker images
--------------------------
+-----------------+-------------+-------+
| | CPU AVX | GPU |
+=================+=============+=======+
| cpu | yes | no |
+-----------------+-------------+-------+
| cpu-noavx | no | no |
+-----------------+-------------+-------+
| gpu | yes | yes |
+-----------------+-------------+-------+
| gpu-noavx | no | yes |
+-----------------+-------------+-------+
There are 12 `images <https://hub.docker.com/r/paddledev/paddle/tags/>`_ for PaddlePaddle, and the name is :code:`paddle-dev/paddle`, tags are\:
We run the following command on Linux to check if the CPU supports :code:`AVX`.
.. code-block:: bash
+-----------------+------------------+------------------------+-----------------------+
| | normal | devel | demo |
+=================+==================+========================+=======================+
| CPU | cpu-latest | cpu-devel-latest | cpu-demo-latest |
+-----------------+------------------+------------------------+-----------------------+
| GPU | gpu-latest | gpu-devel-latest | gpu-demo-latest |
+-----------------+------------------+------------------------+-----------------------+
| CPU WITHOUT AVX | cpu-noavx-latest | cpu-devel-noavx-latest | cpu-demo-noavx-latest |
+-----------------+------------------+------------------------+-----------------------+
| GPU WITHOUT AVX | gpu-noavx-latest | gpu-devel-noavx-latest | gpu-demo-noavx-latest |
+-----------------+------------------+------------------------+-----------------------+
if cat /proc/cpuinfo | grep -i avx; then echo Yes; else echo No; fi
And the three columns are:
On Mac OS X, we need to run
* normal\: The docker image only contains binary of PaddlePaddle.
* devel\: The docker image contains PaddlePaddle binary, source code and essential build environment.
* demo\: The docker image contains the dependencies to run PaddlePaddle demo.
.. code-block:: bash
And the four rows are:
sysctl -a | grep machdep.cpu.leaf7_features
* CPU\: CPU Version. Support CPU which has :code:`AVX` instructions.
* GPU\: GPU Version. Support GPU, and cpu has :code:`AVX` instructions.
* CPU WITHOUT AVX\: CPU Version, which support most CPU even doesn't have :code:`AVX` instructions.
* GPU WITHOUT AVX\: GPU Version, which support most CPU even doesn't have :code:`AVX` instructions.
User can choose any version depends on machine. The following script can help you to detect your CPU support :code:`AVX` or not.
Once we determine the proper variant, we can cope with the Docker image tag name by appending the version number. For example, the following command runs the AVX-enabled image of the most recent version:
.. code-block:: bash
if cat /proc/cpuinfo | grep -q avx ; then echo "Support AVX"; else echo "Not support AVX"; fi
.. code-block:: bash
If the output is :code:`Support AVX`, then you can choose the AVX version of PaddlePaddle, otherwise, you need select :code:`noavx` version of PaddlePaddle. For example, the CPU develop version of PaddlePaddle is :code:`paddle-dev/paddle:cpu-devel-latest`.
docker run -it --rm paddledev/paddle:cpu-latest /bin/bash
The PaddlePaddle images don't contain any entry command. You need to write your entry command to use this image. See :code:`Remote Access` part or just use following command to run a :code:`bash`
To run a GPU-enabled image, you need to install CUDA and let Docker knows about it:
.. code-block:: bash
docker run -it paddledev/paddle:cpu-latest /bin/bash
Download and Run Docker images
------------------------------
You have to install Docker in your machine which has linux kernel version 3.10+ first. You can refer to the official guide https://docs.docker.com/engine/installation/ for further information.
You can use :code:`docker pull ` to download images first, or just launch a container with :code:`docker run` \:
.. code-block:: bash
docker run -it paddledev/paddle:cpu-latest
If you want to launch container with GPU support, you need to set some environment variables at the same time:
.. code-block:: bash
.. code-block:: bash
export CUDA_SO="$(\ls /usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')"
export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}')
docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddle:gpu-latest
The default entry point of all our Docker images starts the OpenSSH server. To run PaddlePaddle and to expose OpenSSH port to 2202 on the host computer:
Some notes for docker
---------------------
Performance
+++++++++++
Since Docker is based on the lightweight virtual containers, the CPU computing performance maintains well. And GPU driver and equipments are all mapped to the container, so the GPU computing performance would not be seriously affected.
If you use high performance nic, such as RDMA(RoCE 40GbE or IB 56GbE), Ethernet(10GbE), it is recommended to use config "-net = host".
Remote access
+++++++++++++
.. code-block:: bash
If you want to enable ssh access background, you need to build an image by yourself. Please refer to official guide https://docs.docker.com/engine/reference/builder/ for further information.
docker run -d -p 2202:22 paddledev/paddle:cpu-latest
Following is a simple Dockerfile with ssh:
Then we can login to the container using username :code:`root` and password :code:`root`:
.. literalinclude:: ../../doc_cn/build_and_install/install/paddle_ssh.Dockerfile
.. code-block:: bash
Then you can build an image with Dockerfile and launch a container:
ssh -p 2202 root@localhost
.. code-block:: bash
# cd into Dockerfile directory
docker build . -t paddle_ssh
# run container, and map host machine port 8022 to container port 22
docker run -d -p 8022:22 --name paddle_ssh_machine paddle_ssh
Build Docker images
-------------------
Now, you can ssh on port 8022 to access the container, username is root, password is also root:
Developers might want to build Docker images from their local commit or from a tagged version. Suppose that your local repo is at :code:`~/work/Paddle`, the following steps builds a cpu variant from your current work:
.. code-block:: bash
.. code-block:: bash
ssh -p 8022 root@YOUR_HOST_MACHINE
cd ~/Paddle
./paddle/scripts/docker/generates.sh # Use m4 to generate Dockerfiles for each variant.
docker build -t paddle:latest -f ./paddle/scripts/docker/Dockerfile.cpu
You can stop and delete the container as following:
As a release engineer, you might want to build Docker images for a certain version and publish them to dockerhub.com. You can do this by switching to the right Git tag, or create a new tag, before running `docker build`. For example, the following commands build Docker images for v0.9.0:
.. code-block:: bash
.. code-block:: bash
# stop
docker stop paddle_ssh_machine
# delete
docker rm paddle_ssh_machine
cd ~/Paddle
git checkout tags/v0.9.0
./paddle/scripts/docker/generates.sh # Use m4 to generate Dockerfiles for each variant.
docker build -t paddle:cpu-v0.9.0 -f ./paddle/scripts/docker/Dockerfile.cpu

@ -27,11 +27,6 @@ Arguments* Arguments::createArguments(size_t slotNum) {
void Arguments::resize(size_t slotNum) { m->outputs.resize(slotNum); }
Matrix* Arguments::getSlotValue(size_t idx) const throw(RangeError) {
auto& a = m->getArg(idx);
return Matrix::createByPaddleMatrixPtr(&a.value);
}
Arguments::Arguments() : m(new ArgumentsPrivate()) {}
Arguments::~Arguments() { delete m; }
@ -43,6 +38,16 @@ Arguments* Arguments::createByPaddleArgumentVector(void* ptr) {
return args;
}
Matrix* Arguments::getSlotValue(size_t idx) const throw(RangeError) {
auto& a = m->getArg(idx);
return Matrix::createByPaddleMatrixPtr(&a.value);
}
Matrix* Arguments::getSlotGrad(size_t idx) const throw(RangeError) {
auto& a = m->getArg(idx);
return Matrix::createByPaddleMatrixPtr(&a.grad);
}
IVector* Arguments::getSlotIds(size_t idx) const throw(RangeError) {
auto& a = m->getArg(idx);
return IVector::createByPaddleVectorPtr(&a.ids);
@ -58,6 +63,11 @@ void Arguments::setSlotValue(size_t idx, Matrix* mat) throw(RangeError) {
a.value = m->cast<paddle::Matrix>(mat->getSharedPtr());
}
void Arguments::setSlotGrad(size_t idx, Matrix* mat) throw(RangeError) {
auto& a = m->getArg(idx);
a.grad = m->cast<paddle::Matrix>(mat->getSharedPtr());
}
void Arguments::setSlotIn(size_t idx, Matrix* mat) throw(RangeError) {
auto& a = m->getArg(idx);
a.in = m->cast<paddle::Matrix>(mat->getSharedPtr());

@ -193,5 +193,4 @@ namespace std {
%ignore OptimizationConfigPrivate;
%ignore ParameterTraverseCallbackPrivate;
%include "utils/GlobalConstants.h"
%include "api/PaddleAPI.h"
%include "api/PaddleAPI.h"

@ -156,12 +156,15 @@ public:
* @param dim1 dimension of data.
* @param dim2 dimension of data.
* @param copy true if copy into a new matrix, false will create
* matrix inplace.
* matrix inplace. copy = false should be used with extreme
* care because Matrix will share the memory with the given
* numpy array. If the numpy array object is no longer valid,
* the memory space will not be usable.
*/
static Matrix* createCpuDenseFromNumpy(float* data,
int dim1,
int dim2,
bool copy = false);
bool copy = true);
/// Create Gpu Dense Matrix from numpy matrix, dtype=float32
static Matrix* createGpuDenseFromNumpy(float* data, int dim1, int dim2);
@ -271,11 +274,18 @@ public:
*/
static Vector* createCpuVectorFromNumpy(float* data,
int dim,
bool copy = false);
bool copy = true);
/// Create Gpu Vector from numpy array, which dtype=float32
static Vector* createGpuVectorFromNumpy(float* data, int dim);
/**
* copy from another vector
* throw(RangeError) if size of src vector is different from size of this
* vector
*/
void copyFrom(Vector* src) throw(RangeError);
/// Cast to numpy array inplace.
void toNumpyArrayInplace(float** view_data, int* dim1) throw(UnsupportError);
@ -339,7 +349,7 @@ public:
*/
static IVector* createCpuVectorFromNumpy(int* data,
int dim,
bool copy = false);
bool copy = true);
/**
* Create Gpu IVector from numpy array, which dtype=int32
*/
@ -418,6 +428,7 @@ public:
* the param idx is the slot id
*/
Matrix* getSlotValue(size_t idx) const throw(RangeError);
Matrix* getSlotGrad(size_t idx) const throw(RangeError);
IVector* getSlotIds(size_t idx) const throw(RangeError);
Matrix* getSlotIn(size_t idx) const throw(RangeError);
IVector* getSlotSequenceStartPositions(size_t idx) const throw(RangeError);
@ -434,6 +445,7 @@ public:
* The other param is the input Matrix or vector.
*/
void setSlotValue(size_t idx, Matrix* mat) throw(RangeError);
void setSlotGrad(size_t idx, Matrix* mat) throw(RangeError);
void setSlotIn(size_t idx, Matrix* mat) throw(RangeError);
void setSlotIds(size_t idx, IVector* vec) throw(RangeError);
void setSlotSequenceStartPositions(size_t idx,
@ -535,6 +547,7 @@ public:
size_t getID() const;
ParameterConfig* getConfig();
void setValueUpdated();
private:
static Parameter* createFromRawPtr(void* ptr);

@ -68,3 +68,5 @@ ParameterConfig* Parameter::getConfig() {
}
size_t Parameter::getID() const { return m->getPtr()->getID(); }
void Parameter::setValueUpdated() { m->getPtr()->setValueUpdated(); }

@ -281,6 +281,13 @@ FloatArray Vector::getData() const {
}
}
void Vector::copyFrom(Vector* src) throw(RangeError) {
if (src->m->vec->getSize() != m->vec->getSize()) {
throw RangeError();
}
m->vec->copyFrom(*src->m->vec);
}
bool Vector::isGpu() const {
return std::dynamic_pointer_cast<paddle::GpuVector>(m->vec) != nullptr;
}

@ -68,7 +68,7 @@ class TestMatrix(unittest.TestCase):
def test_numpyCpu(self):
numpy_mat = np.matrix([[1, 2], [3, 4], [5, 6]], dtype="float32")
m = swig_paddle.Matrix.createCpuDenseFromNumpy(numpy_mat)
m = swig_paddle.Matrix.createCpuDenseFromNumpy(numpy_mat, copy=False)
self.assertEqual((int(m.getHeight()), int(m.getWidth())),
numpy_mat.shape)

@ -43,7 +43,7 @@ class TestIVector(unittest.TestCase):
def test_cpu_numpy(self):
vec = np.array([1, 3, 4, 65, 78, 1, 4], dtype="int32")
iv = swig_paddle.IVector.createCpuVectorFromNumpy(vec)
iv = swig_paddle.IVector.createCpuVectorFromNumpy(vec, copy=False)
self.assertEqual(vec.shape[0], int(iv.__len__()))
vec[4] = 832
for i in xrange(len(iv)):
@ -107,7 +107,7 @@ class TestVector(unittest.TestCase):
def testCpuNumpy(self):
numpy_arr = np.array([1.2, 2.3, 3.4, 4.5], dtype="float32")
vec = swig_paddle.Vector.createCpuVectorFromNumpy(numpy_arr)
vec = swig_paddle.Vector.createCpuVectorFromNumpy(numpy_arr, copy=False)
assert isinstance(vec, swig_paddle.Vector)
numpy_arr[0] = 0.1
for n, v in zip(numpy_arr, vec):
@ -152,4 +152,4 @@ if __name__ == '__main__':
unittest.TextTestRunner().run(suite)
if swig_paddle.isGpuVersion():
swig_paddle.setUseGpu(True)
unittest.main()
unittest.main()

@ -24,7 +24,9 @@ def doubleEqual(a, b):
def __readFromFile():
for i in xrange(10002):
yield np.random.rand(784), random.randint(0, 9)
label = np.random.randint(0, 9)
sample = np.random.rand(784) + 0.1 * label
yield sample, label
def loadMNISTTrainData(batch_size=100):

@ -271,7 +271,9 @@ public:
void finishAsyncLoad() {
stopping_ = true;
taskReadySem_.post();
asyncLoader_->join();
if (asyncLoader_) {
asyncLoader_->join();
}
}
void setPending(bool pending) { pending_ = pending; }

@ -68,10 +68,10 @@ void BatchNormBaseLayer::calFeatureMapSize() {
} else {
imageH_ = inputLayers_[0]->getOutput().getFrameHeight();
imageW_ = inputLayers_[0]->getOutput().getFrameWidth();
getOutput().setFrameHeight(imageH_);
getOutput().setFrameWidth(imageW_);
}
imgPixels_ = imageH_ * imageW_;
getOutput().setFrameHeight(imageH_);
getOutput().setFrameWidth(imageW_);
}
} // namespace paddle

@ -39,9 +39,17 @@ add_unittest_without_exec(test_ConvUnify
test_ConvUnify.cpp
LayerGradUtil.cpp
TestUtil.cpp)
add_test(NAME test_ConvUnify
COMMAND test_ConvUnify)
################# test_BatchNorm #######################
add_unittest_without_exec(test_BatchNorm
test_BatchNorm.cpp
LayerGradUtil.cpp
TestUtil.cpp)
add_test(NAME test_BatchNorm
COMMAND test_BatchNorm)
################## test_Evaluator #######################
add_unittest(test_Evaluator
test_Evaluator.cpp

@ -0,0 +1,120 @@
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include <vector>
#include <string>
#include "paddle/gserver/layers/DataLayer.h"
#include "ModelConfig.pb.h"
#include "paddle/trainer/Trainer.h"
#include "paddle/utils/GlobalConstants.h"
#include "paddle/gserver/layers/ExpandConvTransLayer.h"
#include "TestUtil.h"
#include "LayerGradUtil.h"
using namespace paddle; // NOLINT
using namespace std; // NOLINT
P_DECLARE_bool(use_gpu);
P_DECLARE_int32(gpu_id);
P_DECLARE_double(checkgrad_eps);
P_DECLARE_bool(thread_local_rand_use_global_seed);
P_DECLARE_bool(prev_batch_state);
// Test that the batchNormLayer can be followed by a ConvLayer
TEST(Layer, batchNorm) {
FLAGS_use_gpu = false;
TestConfig configBN;
const int CHANNELS = 6272;
const int IMG_SIZE = 1;
configBN.layerConfig.set_type("batch_norm");
configBN.layerConfig.set_name("bn");
configBN.layerConfig.set_size(CHANNELS * IMG_SIZE * IMG_SIZE);
configBN.layerConfig.set_active_type("relu");
configBN.biasSize = CHANNELS;
configBN.inputDefs.push_back({INPUT_DATA, "layer_0",
/* dim= */ IMG_SIZE * IMG_SIZE * CHANNELS,
/* paraSize= */ CHANNELS});
configBN.inputDefs.push_back({INPUT_DATA, "layer_1_running_mean",
1, CHANNELS});
configBN.inputDefs.back().isStatic = true;
configBN.inputDefs.push_back({INPUT_DATA, "layer_2_running_var",
1, CHANNELS});
configBN.inputDefs.back().isStatic = true;
LayerInputConfig* input = configBN.layerConfig.add_inputs();
configBN.layerConfig.add_inputs();
configBN.layerConfig.add_inputs();
ImageConfig* img_conf = input->mutable_image_conf();
img_conf->set_channels(CHANNELS);
img_conf->set_img_size(IMG_SIZE);
// Setting up conv-layer config
TestConfig config;
config.biasSize = 64;
config.layerConfig.set_type("exconv");
config.layerConfig.set_num_filters(64);
config.layerConfig.set_partial_sum(1);
config.layerConfig.set_shared_biases(true);
config.inputDefs.push_back({INPUT_DATA, "bn", 6272, 204800});
input = config.layerConfig.add_inputs();
ConvConfig* conv = input->mutable_conv_conf();
conv->set_filter_size(5);
conv->set_filter_size_y(5);
conv->set_channels(128);
conv->set_padding(1);
conv->set_padding_y(1);
conv->set_stride(2);
conv->set_stride_y(2);
conv->set_groups(1);
conv->set_filter_channels(conv->channels() / conv->groups());
conv->set_img_size(7);
conv->set_output_x(3);
config.layerConfig.set_size(conv->output_x() * conv->output_x() *
config.layerConfig.num_filters());
config.layerConfig.set_name("conv");
// data layer initialize
std::vector<DataLayerPtr> dataLayers;
LayerMap layerMap;
vector<Argument> datas;
initDataLayer(configBN, &dataLayers, &datas, &layerMap, "batch_norm",
100, false, false);
// test layer initialize
std::vector<ParameterPtr> parameters;
LayerPtr bnLayer;
initTestLayer(configBN, &layerMap, &parameters, &bnLayer);
std::vector<ParameterPtr> parameters2;
LayerPtr convLayer;
initTestLayer(config, &layerMap, &parameters2, &convLayer);
bnLayer->forward(PASS_GC);
convLayer->forward(PASS_GC);
CHECK_EQ(convLayer->getOutputValue()->getHeight(), 100);
CHECK_EQ(convLayer->getOutputValue()->getWidth(), 576);
}
int main(int argc, char** argv) {
testing::InitGoogleTest(&argc, argv);
initMain(argc, argv);
FLAGS_thread_local_rand_use_global_seed = true;
srand(1);
return RUN_ALL_TESTS();
}

@ -559,10 +559,10 @@ def __monkey_patch_trainer__():
def monkeypatches():
patches = [
__monkeypatch_init_paddle__, __monkeypatch_gradient_machine__,
__monkey_patch_protobuf_objects__, __monkey_patch_parameter__,
__monkey_patch_trainer__
]
patches = [__monkeypatch_init_paddle__,
__monkeypatch_gradient_machine__,
__monkey_patch_protobuf_objects__,
__monkey_patch_parameter__,
__monkey_patch_trainer__]
for patch in patches:
patch()

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save