MKLDNN pool2d OP kernel added (#8879)
* MKLDNN pool2d OP kernel added * conv2d and pool2d MKLDNN kernels renamed * MKLDNN conv2d kernel refactoringshanyi15-patch-2
parent
ccc5418841
commit
4730a4be24
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,217 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/fluid/operators/pool_op.h"
|
||||
#include "paddle/fluid/platform/mkldnn_helper.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename T>
|
||||
class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
|
||||
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
|
||||
"It must use CPUPlace.");
|
||||
|
||||
auto& dev_ctx =
|
||||
ctx.template device_context<platform::MKLDNNDeviceContext>();
|
||||
const auto& mkldnn_engine = dev_ctx.GetEngine();
|
||||
|
||||
const Tensor* input = ctx.Input<Tensor>("X");
|
||||
Tensor* output = ctx.Output<Tensor>("Out");
|
||||
|
||||
// Get an unique name from "argument" name of "Out" variable
|
||||
// This name will be used as key when saving info into device context
|
||||
const std::string key = ctx.op().Output("Out");
|
||||
const std::string key_pool_pd = key + "@pool_pd";
|
||||
const std::string key_pool_workspace_memory =
|
||||
key + "@pool_workspace_memory";
|
||||
|
||||
std::string pooling_type = ctx.Attr<std::string>("pooling_type");
|
||||
std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
|
||||
std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
|
||||
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
|
||||
if (ctx.Attr<bool>("global_pooling")) {
|
||||
for (size_t i = 0; i < ksize.size(); ++i) {
|
||||
paddings[i] = 0;
|
||||
ksize[i] = static_cast<int>(input->dims()[i + 2]);
|
||||
}
|
||||
}
|
||||
|
||||
// Only 2D pooling is supported now
|
||||
PADDLE_ENFORCE(ksize.size() == 2, "ksize must be 2D, i.e. 2D pooling");
|
||||
PADDLE_ENFORCE(pooling_type == "max" || pooling_type == "avg",
|
||||
"pooling_type must be 'max' or 'avg'");
|
||||
PADDLE_ENFORCE(input->dims().size() == 4,
|
||||
"Input dim must be with 4, i.e. NCHW");
|
||||
|
||||
const T* input_data = input->data<T>();
|
||||
T* output_data = output->mutable_data<T>(ctx.GetPlace());
|
||||
|
||||
std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
|
||||
std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
|
||||
|
||||
// TODO(pzelazko-intel): support more formats
|
||||
auto src_md = platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32,
|
||||
mkldnn::memory::format::nchw);
|
||||
auto dst_md = platform::MKLDNNMemDesc(dst_tz, mkldnn::memory::f32,
|
||||
mkldnn::memory::format::nchw);
|
||||
|
||||
std::shared_ptr<mkldnn::pooling_forward::primitive_desc> pool_pd =
|
||||
CreatePrimitiveDesc(src_md, dst_md, strides, paddings, ksize,
|
||||
pooling_type, mkldnn_engine);
|
||||
|
||||
// save pool_pd into global device context to be referred in backward path
|
||||
dev_ctx.SetBlob(key_pool_pd, pool_pd);
|
||||
|
||||
std::shared_ptr<mkldnn::memory> workspace_memory =
|
||||
CreateWorkspaceMemory(pool_pd, pooling_type, mkldnn_engine);
|
||||
|
||||
// save pool_workspace_memory to be referred in backward path
|
||||
dev_ctx.SetBlob(key_pool_workspace_memory, workspace_memory);
|
||||
|
||||
auto src_memory =
|
||||
mkldnn::memory({src_md, mkldnn_engine}, (void*)input_data);
|
||||
auto dst_memory =
|
||||
mkldnn::memory({dst_md, mkldnn_engine}, (void*)output_data);
|
||||
|
||||
auto pool_prim = mkldnn::pooling_forward(*pool_pd, src_memory, dst_memory,
|
||||
*workspace_memory);
|
||||
|
||||
// push primitive to stream and wait until it's executed
|
||||
std::vector<mkldnn::primitive> pipeline{pool_prim};
|
||||
mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
|
||||
}
|
||||
|
||||
private:
|
||||
std::unique_ptr<mkldnn::pooling_forward::primitive_desc> CreatePrimitiveDesc(
|
||||
const mkldnn::memory::desc& src, const mkldnn::memory::desc& dst,
|
||||
const std::vector<int>& stride, const std::vector<int>& padding,
|
||||
const std::vector<int>& kernel, const std::string& pooling_type,
|
||||
const mkldnn::engine& engine) const {
|
||||
auto pool_desc = mkldnn::pooling_forward::desc(
|
||||
mkldnn::prop_kind::forward,
|
||||
pooling_type == "max" ? mkldnn::algorithm::pooling_max
|
||||
: mkldnn::algorithm::pooling_avg,
|
||||
src, dst, stride, kernel, padding, padding, mkldnn::padding_kind::zero);
|
||||
|
||||
auto p_pool_pd =
|
||||
new mkldnn::pooling_forward::primitive_desc(pool_desc, engine);
|
||||
return std::unique_ptr<mkldnn::pooling_forward::primitive_desc>(p_pool_pd);
|
||||
}
|
||||
|
||||
std::unique_ptr<mkldnn::memory> CreateWorkspaceMemory(
|
||||
std::shared_ptr<mkldnn::pooling_forward::primitive_desc> pool_pd,
|
||||
const std::string& pooling_type, const mkldnn::engine& engine) const {
|
||||
mkldnn::memory::primitive_desc workspace_md =
|
||||
pooling_type == "max"
|
||||
? pool_pd->workspace_primitive_desc()
|
||||
: mkldnn::memory::primitive_desc(
|
||||
{{}, mkldnn::memory::f32, mkldnn::memory::format::nchw},
|
||||
engine);
|
||||
|
||||
auto p_workspace_memory = new mkldnn::memory(workspace_md);
|
||||
return std::unique_ptr<mkldnn::memory>(p_workspace_memory);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
|
||||
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
|
||||
"It must use CPUPlace.");
|
||||
|
||||
const Tensor* in_x = ctx.Input<Tensor>("X");
|
||||
const Tensor* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
|
||||
Tensor* in_x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
|
||||
|
||||
// Get an unique name from "argument" name of "Out" variable
|
||||
// This name will be used as key when referring info from device context
|
||||
const std::string key = ctx.op().Input("Out");
|
||||
const std::string key_pool_pd = key + "@pool_pd";
|
||||
const std::string key_pool_workspace_memory =
|
||||
key + "@pool_workspace_memory";
|
||||
|
||||
std::string pooling_type = ctx.Attr<std::string>("pooling_type");
|
||||
std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
|
||||
std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
|
||||
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
|
||||
|
||||
if (ctx.Attr<bool>("global_pooling")) {
|
||||
for (size_t i = 0; i < ksize.size(); ++i) {
|
||||
paddings[i] = 0;
|
||||
ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
|
||||
}
|
||||
}
|
||||
|
||||
auto& dev_ctx =
|
||||
ctx.template device_context<platform::MKLDNNDeviceContext>();
|
||||
const mkldnn::engine& mkldnn_engine = dev_ctx.GetEngine();
|
||||
|
||||
const T* out_grad_data = out_grad->data<T>();
|
||||
T* in_x_grad_data = in_x_grad->mutable_data<T>(ctx.GetPlace());
|
||||
|
||||
std::vector<int> diff_src_tz =
|
||||
paddle::framework::vectorize2int(in_x_grad->dims());
|
||||
std::vector<int> diff_dst_tz =
|
||||
paddle::framework::vectorize2int(out_grad->dims());
|
||||
|
||||
auto diff_src_md = platform::MKLDNNMemDesc(diff_src_tz, mkldnn::memory::f32,
|
||||
mkldnn::memory::format::nchw);
|
||||
auto diff_dst_md = platform::MKLDNNMemDesc(diff_dst_tz, mkldnn::memory::f32,
|
||||
mkldnn::memory::format::nchw);
|
||||
|
||||
// Retrieve pool_pd/pool_workspace_memory from device context
|
||||
auto pool_pd =
|
||||
std::static_pointer_cast<mkldnn::pooling_forward::primitive_desc>(
|
||||
dev_ctx.GetBlob(key_pool_pd));
|
||||
PADDLE_ENFORCE(pool_pd != nullptr,
|
||||
"Fail to find pool_pd in device context");
|
||||
|
||||
auto workspace_memory = std::static_pointer_cast<mkldnn::memory>(
|
||||
dev_ctx.GetBlob(key_pool_workspace_memory));
|
||||
PADDLE_ENFORCE(workspace_memory != nullptr,
|
||||
"Fail to find workspace_memory in device context");
|
||||
|
||||
auto pool_bwd_desc = mkldnn::pooling_backward::desc(
|
||||
pooling_type == "max" ? mkldnn::algorithm::pooling_max
|
||||
: mkldnn::algorithm::pooling_avg,
|
||||
diff_src_md, diff_dst_md, strides, ksize, paddings, paddings,
|
||||
mkldnn::padding_kind::zero);
|
||||
auto pool_bwd_pd = mkldnn::pooling_backward::primitive_desc(
|
||||
pool_bwd_desc, mkldnn_engine, *pool_pd);
|
||||
|
||||
auto diff_src_memory =
|
||||
mkldnn::memory({diff_src_md, mkldnn_engine}, (void*)in_x_grad_data);
|
||||
auto diff_dst_memory =
|
||||
mkldnn::memory({diff_dst_md, mkldnn_engine}, (void*)out_grad_data);
|
||||
|
||||
auto bwd_prim = mkldnn::pooling_backward(
|
||||
pool_bwd_pd, diff_dst_memory, *workspace_memory, diff_src_memory);
|
||||
|
||||
// push primitive to stream and wait until it's executed
|
||||
std::vector<mkldnn::primitive> pipeline{bwd_prim};
|
||||
mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
|
||||
} // Compute()
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
REGISTER_OP_KERNEL(pool2d, MKLDNN, ::paddle::platform::CPUPlace,
|
||||
paddle::operators::PoolMKLDNNOpKernel<float>);
|
||||
REGISTER_OP_KERNEL(pool2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
|
||||
paddle::operators::PoolMKLDNNGradOpKernel<float>);
|
Loading…
Reference in new issue