|
|
|
@ -80,6 +80,8 @@ struct MaxOrMinGradFunctor {
|
|
|
|
|
auto equals = x == y.broadcast(dim);
|
|
|
|
|
auto ones = dx.constant(1);
|
|
|
|
|
auto zeros = dx.constant(0);
|
|
|
|
|
// If there are multiple minimum or maximum elements, the subgradient of
|
|
|
|
|
// each is the set [0, 1], and we pass gradient to all of them here.
|
|
|
|
|
dx.device(place) = dy.broadcast(dim) * equals.select(ones, zeros);
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
@ -145,102 +147,52 @@ class ReduceGradKernel : public framework::OpKernel {
|
|
|
|
|
int rank = context.Input<Tensor>("X")->dims().size();
|
|
|
|
|
switch (rank) {
|
|
|
|
|
case 1:
|
|
|
|
|
ReduceCompute<1>(context);
|
|
|
|
|
ReduceGradCompute<1>(context);
|
|
|
|
|
break;
|
|
|
|
|
case 2:
|
|
|
|
|
ReduceCompute<2>(context);
|
|
|
|
|
ReduceGradCompute<2>(context);
|
|
|
|
|
break;
|
|
|
|
|
case 3:
|
|
|
|
|
ReduceCompute<3>(context);
|
|
|
|
|
ReduceGradCompute<3>(context);
|
|
|
|
|
break;
|
|
|
|
|
case 4:
|
|
|
|
|
ReduceCompute<4>(context);
|
|
|
|
|
ReduceGradCompute<4>(context);
|
|
|
|
|
break;
|
|
|
|
|
case 5:
|
|
|
|
|
ReduceCompute<5>(context);
|
|
|
|
|
ReduceGradCompute<5>(context);
|
|
|
|
|
break;
|
|
|
|
|
case 6:
|
|
|
|
|
ReduceCompute<6>(context);
|
|
|
|
|
ReduceGradCompute<6>(context);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
template <size_t D>
|
|
|
|
|
void ReduceCompute(const framework::ExecutionContext& context) const {
|
|
|
|
|
void ReduceGradCompute(const framework::ExecutionContext& context) const {
|
|
|
|
|
auto* input0 = context.Input<Tensor>("X");
|
|
|
|
|
auto* input1 = context.Input<Tensor>("Out");
|
|
|
|
|
auto* input2 = context.Input<Tensor>(framework::GradVarName("Out"));
|
|
|
|
|
auto* output = context.Output<Tensor>(framework::GradVarName("X"));
|
|
|
|
|
|
|
|
|
|
if (output != nullptr) {
|
|
|
|
|
output->mutable_data<T>(context.GetPlace());
|
|
|
|
|
auto x = EigenTensor<T, D>::From(*input0);
|
|
|
|
|
auto x_grad = EigenTensor<T, D>::From(*output);
|
|
|
|
|
auto x_rank = static_cast<int>(x.dimensions().size());
|
|
|
|
|
int dim = static_cast<int>(context.Attr<int>("dim"));
|
|
|
|
|
if (dim < 0) dim = x_rank + dim;
|
|
|
|
|
DDim dims = input0->dims();
|
|
|
|
|
dims[dim] = 1;
|
|
|
|
|
auto x_reduce = EigenTensor<T, D>::From(*input1, dims);
|
|
|
|
|
auto x_reduce_grad = EigenTensor<T, D>::From(*input2, dims);
|
|
|
|
|
|
|
|
|
|
Eigen::array<int, D> braodcast_dim;
|
|
|
|
|
for (size_t i = 0; i < D; ++i) braodcast_dim[i] = 1;
|
|
|
|
|
braodcast_dim[dim] = input0->dims()[dim];
|
|
|
|
|
auto& place = context.GetEigenDevice<Place>();
|
|
|
|
|
Functor functor;
|
|
|
|
|
functor(place, x, x_reduce, x_grad, x_reduce_grad, braodcast_dim,
|
|
|
|
|
braodcast_dim[dim]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// For EigenTensor unsupported reduce
|
|
|
|
|
template <typename T, typename Functor>
|
|
|
|
|
class ReduceGradEigenFreeKernel : public framework::OpKernel {
|
|
|
|
|
public:
|
|
|
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
|
|
|
auto* x = context.Input<Tensor>("X");
|
|
|
|
|
auto* out = context.Input<Tensor>("Out");
|
|
|
|
|
auto* x_grad = context.Output<Tensor>(framework::GradVarName("X"));
|
|
|
|
|
auto* out_grad = context.Input<Tensor>(framework::GradVarName("Out"));
|
|
|
|
|
if (x_grad != nullptr) {
|
|
|
|
|
DDim dims = x->dims();
|
|
|
|
|
int rank = dims.size();
|
|
|
|
|
int dim = static_cast<int>(context.Attr<int>("dim"));
|
|
|
|
|
if (dim < 0) dim = rank + dim;
|
|
|
|
|
|
|
|
|
|
auto* x_data = x->data<T>();
|
|
|
|
|
auto* x_grad_data = x_grad->mutable_data<T>(context.GetPlace());
|
|
|
|
|
auto* out_data = out->data<T>();
|
|
|
|
|
auto* out_grad_data = out_grad->data<T>();
|
|
|
|
|
|
|
|
|
|
int outer_count = 1;
|
|
|
|
|
int inner_count = 1;
|
|
|
|
|
int mid_count = dims[dim];
|
|
|
|
|
for (int i = 0; i < dim; ++i) {
|
|
|
|
|
outer_count *= dims[i];
|
|
|
|
|
}
|
|
|
|
|
for (int i = dim + 1; i < rank; ++i) {
|
|
|
|
|
inner_count *= dims[i];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int x_offset = 0; // offset on raw data
|
|
|
|
|
int out_offset = 0; // offset on reduced data
|
|
|
|
|
Functor functor;
|
|
|
|
|
for (int i = 0; i < outer_count; ++i) {
|
|
|
|
|
for (int j = 0; j < inner_count; ++j) {
|
|
|
|
|
out_offset = inner_count * i + j;
|
|
|
|
|
for (int k = 0; k < mid_count; ++k) {
|
|
|
|
|
x_offset = (inner_count * mid_count) * i + inner_count * k + j;
|
|
|
|
|
functor(x_data + x_offset, out_data + out_offset,
|
|
|
|
|
x_grad_data + x_offset, out_grad_data + out_offset,
|
|
|
|
|
mid_count);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
output->mutable_data<T>(context.GetPlace());
|
|
|
|
|
auto x = EigenTensor<T, D>::From(*input0);
|
|
|
|
|
auto x_grad = EigenTensor<T, D>::From(*output);
|
|
|
|
|
auto x_rank = static_cast<int>(x.dimensions().size());
|
|
|
|
|
int dim = static_cast<int>(context.Attr<int>("dim"));
|
|
|
|
|
if (dim < 0) dim = x_rank + dim;
|
|
|
|
|
DDim dims = input0->dims();
|
|
|
|
|
dims[dim] = 1;
|
|
|
|
|
auto x_reduce = EigenTensor<T, D>::From(*input1, dims);
|
|
|
|
|
auto x_reduce_grad = EigenTensor<T, D>::From(*input2, dims);
|
|
|
|
|
|
|
|
|
|
Eigen::array<int, D> braodcast_dim;
|
|
|
|
|
for (size_t i = 0; i < D; ++i) braodcast_dim[i] = 1;
|
|
|
|
|
braodcast_dim[dim] = input0->dims()[dim];
|
|
|
|
|
auto& place = context.GetEigenDevice<Place>();
|
|
|
|
|
Functor functor;
|
|
|
|
|
functor(place, x, x_reduce, x_grad, x_reduce_grad, braodcast_dim,
|
|
|
|
|
braodcast_dim[dim]);
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|