[NPU] Support npu op log, log_grad, sqrt, sqrt_grad, square, tanh and tanh_grad (#31600)
parent
de65486c19
commit
47860ce20d
@ -0,0 +1,154 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import unittest
|
||||
import sys
|
||||
sys.path.append("..")
|
||||
from op_test import OpTest
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
|
||||
paddle.enable_static()
|
||||
SEED = 2021
|
||||
|
||||
|
||||
@unittest.skipIf(not paddle.is_compiled_with_npu(),
|
||||
"core is not compiled with NPU")
|
||||
class TestLog(OpTest):
|
||||
def setUp(self):
|
||||
self.set_npu()
|
||||
self.op_type = "log"
|
||||
self.place = paddle.NPUPlace(0)
|
||||
|
||||
self.init_dtype()
|
||||
np.random.seed(SEED)
|
||||
x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
|
||||
out = np.log(x)
|
||||
|
||||
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
||||
self.attrs = {}
|
||||
self.outputs = {'Out': out}
|
||||
|
||||
def set_npu(self):
|
||||
self.__class__.use_npu = True
|
||||
|
||||
def init_dtype(self):
|
||||
self.dtype = np.float32
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output_with_place(self.place, check_dygraph=False)
|
||||
|
||||
# TODO(ascendrc): Add grad test
|
||||
# def test_check_grad(self):
|
||||
# if self.dtype == np.float16:
|
||||
# return
|
||||
# self.check_grad(['X'], 'Out')
|
||||
#
|
||||
|
||||
|
||||
@unittest.skipIf(not paddle.is_compiled_with_npu(),
|
||||
"core is not compiled with NPU")
|
||||
class TestLogFp16(OpTest):
|
||||
def setUp(self):
|
||||
self.set_npu()
|
||||
self.op_type = "log"
|
||||
self.place = paddle.NPUPlace(0)
|
||||
|
||||
self.init_dtype()
|
||||
np.random.seed(SEED)
|
||||
x = np.random.uniform(1, 2, [3, 4]).astype(self.dtype)
|
||||
out = np.log(x)
|
||||
|
||||
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
||||
self.attrs = {}
|
||||
self.outputs = {'Out': out}
|
||||
|
||||
def set_npu(self):
|
||||
self.__class__.use_npu = True
|
||||
self.__class__.no_need_check_grad = True
|
||||
|
||||
def init_dtype(self):
|
||||
self.dtype = np.float16
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output_with_place(self.place, check_dygraph=False, atol=1e-5)
|
||||
|
||||
|
||||
@unittest.skipIf(not paddle.is_compiled_with_npu(),
|
||||
"core is not compiled with NPU")
|
||||
class TestLogNet(unittest.TestCase):
|
||||
def _test(self, run_npu=True):
|
||||
main_prog = paddle.static.Program()
|
||||
startup_prog = paddle.static.Program()
|
||||
main_prog.random_seed = SEED
|
||||
startup_prog.random_seed = SEED
|
||||
np.random.seed(SEED)
|
||||
|
||||
a_np = np.random.random(size=(32, 32)).astype('float32')
|
||||
b_np = np.random.random(size=(32, 32)).astype('float32')
|
||||
label_np = np.random.randint(2, size=(32, 1)).astype('int64')
|
||||
|
||||
with paddle.static.program_guard(main_prog, startup_prog):
|
||||
a = paddle.static.data(name="a", shape=[32, 32], dtype='float32')
|
||||
b = paddle.static.data(name="b", shape=[32, 32], dtype='float32')
|
||||
label = paddle.static.data(
|
||||
name="label", shape=[32, 1], dtype='int64')
|
||||
|
||||
c = paddle.multiply(a, b)
|
||||
d = paddle.log(c)
|
||||
|
||||
fc_1 = fluid.layers.fc(input=d, size=128)
|
||||
prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax')
|
||||
|
||||
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
||||
loss = fluid.layers.reduce_mean(cost)
|
||||
sgd = fluid.optimizer.SGD(learning_rate=0.01)
|
||||
sgd.minimize(loss)
|
||||
|
||||
if run_npu:
|
||||
place = paddle.NPUPlace(0)
|
||||
else:
|
||||
place = paddle.CPUPlace()
|
||||
|
||||
exe = paddle.static.Executor(place)
|
||||
exe.run(startup_prog)
|
||||
|
||||
print("Start run on {}".format(place))
|
||||
for epoch in range(100):
|
||||
|
||||
pred_res, loss_res = exe.run(
|
||||
main_prog,
|
||||
feed={"a": a_np,
|
||||
"b": b_np,
|
||||
"label": label_np},
|
||||
fetch_list=[prediction, loss])
|
||||
if epoch % 10 == 0:
|
||||
print("Epoch {} | Prediction[0]: {}, Loss: {}".format(
|
||||
epoch, pred_res[0], loss_res))
|
||||
|
||||
return pred_res, loss_res
|
||||
|
||||
def test_npu(self):
|
||||
cpu_pred, cpu_loss = self._test(False)
|
||||
npu_pred, npu_loss = self._test(True)
|
||||
|
||||
self.assertTrue(np.allclose(npu_pred, cpu_pred, atol=1e-4))
|
||||
self.assertTrue(np.allclose(npu_loss, cpu_loss, atol=1e-4))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
@ -0,0 +1,154 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import unittest
|
||||
import sys
|
||||
sys.path.append("..")
|
||||
from op_test import OpTest
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
|
||||
paddle.enable_static()
|
||||
SEED = 2021
|
||||
|
||||
|
||||
@unittest.skipIf(not paddle.is_compiled_with_npu(),
|
||||
"core is not compiled with NPU")
|
||||
class TestSqrt(OpTest):
|
||||
def setUp(self):
|
||||
self.set_npu()
|
||||
self.op_type = "sqrt"
|
||||
self.place = paddle.NPUPlace(0)
|
||||
|
||||
self.init_dtype()
|
||||
np.random.seed(SEED)
|
||||
x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
|
||||
out = np.sqrt(x)
|
||||
|
||||
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
||||
self.attrs = {}
|
||||
self.outputs = {'Out': out}
|
||||
|
||||
def set_npu(self):
|
||||
self.__class__.use_npu = True
|
||||
|
||||
def init_dtype(self):
|
||||
self.dtype = np.float32
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output_with_place(self.place, check_dygraph=False)
|
||||
|
||||
# TODO(ascendrc): Add grad test
|
||||
# def test_check_grad(self):
|
||||
# if self.dtype == np.float16:
|
||||
# return
|
||||
# self.check_grad(['X'], 'Out')
|
||||
#
|
||||
|
||||
|
||||
@unittest.skipIf(not paddle.is_compiled_with_npu(),
|
||||
"core is not compiled with NPU")
|
||||
class TestSqrtFp16(OpTest):
|
||||
def setUp(self):
|
||||
self.set_npu()
|
||||
self.op_type = "sqrt"
|
||||
self.place = paddle.NPUPlace(0)
|
||||
|
||||
self.init_dtype()
|
||||
np.random.seed(SEED)
|
||||
x = np.random.uniform(1, 2, [3, 4]).astype(self.dtype)
|
||||
out = np.sqrt(x)
|
||||
|
||||
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
||||
self.attrs = {}
|
||||
self.outputs = {'Out': out}
|
||||
|
||||
def set_npu(self):
|
||||
self.__class__.use_npu = True
|
||||
self.__class__.no_need_check_grad = True
|
||||
|
||||
def init_dtype(self):
|
||||
self.dtype = np.float16
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output_with_place(self.place, check_dygraph=False, atol=1e-5)
|
||||
|
||||
|
||||
@unittest.skipIf(not paddle.is_compiled_with_npu(),
|
||||
"core is not compiled with NPU")
|
||||
class TestSqrtNet(unittest.TestCase):
|
||||
def _test(self, run_npu=True):
|
||||
main_prog = paddle.static.Program()
|
||||
startup_prog = paddle.static.Program()
|
||||
main_prog.random_seed = SEED
|
||||
startup_prog.random_seed = SEED
|
||||
np.random.seed(SEED)
|
||||
|
||||
a_np = np.random.random(size=(32, 32)).astype('float32')
|
||||
b_np = np.random.random(size=(32, 32)).astype('float32')
|
||||
label_np = np.random.randint(2, size=(32, 1)).astype('int64')
|
||||
|
||||
with paddle.static.program_guard(main_prog, startup_prog):
|
||||
a = paddle.static.data(name="a", shape=[32, 32], dtype='float32')
|
||||
b = paddle.static.data(name="b", shape=[32, 32], dtype='float32')
|
||||
label = paddle.static.data(
|
||||
name="label", shape=[32, 1], dtype='int64')
|
||||
|
||||
c = paddle.multiply(a, b)
|
||||
d = paddle.sqrt(c)
|
||||
|
||||
fc_1 = fluid.layers.fc(input=d, size=128)
|
||||
prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax')
|
||||
|
||||
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
||||
loss = fluid.layers.reduce_mean(cost)
|
||||
sgd = fluid.optimizer.SGD(learning_rate=0.01)
|
||||
sgd.minimize(loss)
|
||||
|
||||
if run_npu:
|
||||
place = paddle.NPUPlace(0)
|
||||
else:
|
||||
place = paddle.CPUPlace()
|
||||
|
||||
exe = paddle.static.Executor(place)
|
||||
exe.run(startup_prog)
|
||||
|
||||
print("Start run on {}".format(place))
|
||||
for epoch in range(100):
|
||||
|
||||
pred_res, loss_res = exe.run(
|
||||
main_prog,
|
||||
feed={"a": a_np,
|
||||
"b": b_np,
|
||||
"label": label_np},
|
||||
fetch_list=[prediction, loss])
|
||||
if epoch % 10 == 0:
|
||||
print("Epoch {} | Prediction[0]: {}, Loss: {}".format(
|
||||
epoch, pred_res[0], loss_res))
|
||||
|
||||
return pred_res, loss_res
|
||||
|
||||
def test_npu(self):
|
||||
cpu_pred, cpu_loss = self._test(False)
|
||||
npu_pred, npu_loss = self._test(True)
|
||||
|
||||
self.assertTrue(np.allclose(npu_pred, cpu_pred))
|
||||
self.assertTrue(np.allclose(npu_loss, cpu_loss))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
@ -0,0 +1,154 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import unittest
|
||||
import sys
|
||||
sys.path.append("..")
|
||||
from op_test import OpTest
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
|
||||
paddle.enable_static()
|
||||
SEED = 2021
|
||||
|
||||
|
||||
@unittest.skipIf(not paddle.is_compiled_with_npu(),
|
||||
"core is not compiled with NPU")
|
||||
class TestSquare(OpTest):
|
||||
def setUp(self):
|
||||
self.set_npu()
|
||||
self.op_type = "square"
|
||||
self.place = paddle.NPUPlace(0)
|
||||
|
||||
self.init_dtype()
|
||||
np.random.seed(SEED)
|
||||
x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
|
||||
out = np.square(x)
|
||||
|
||||
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
||||
self.attrs = {}
|
||||
self.outputs = {'Out': out}
|
||||
|
||||
def set_npu(self):
|
||||
self.__class__.use_npu = True
|
||||
|
||||
def init_dtype(self):
|
||||
self.dtype = np.float32
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output_with_place(self.place, check_dygraph=False)
|
||||
|
||||
# TODO(ascendrc): Add grad test
|
||||
# def test_check_grad(self):
|
||||
# if self.dtype == np.float16:
|
||||
# return
|
||||
# self.check_grad(['X'], 'Out')
|
||||
#
|
||||
|
||||
|
||||
@unittest.skipIf(not paddle.is_compiled_with_npu(),
|
||||
"core is not compiled with NPU")
|
||||
class TestSquareFp16(OpTest):
|
||||
def setUp(self):
|
||||
self.set_npu()
|
||||
self.op_type = "square"
|
||||
self.place = paddle.NPUPlace(0)
|
||||
|
||||
self.init_dtype()
|
||||
np.random.seed(SEED)
|
||||
x = np.random.uniform(1, 2, [3, 4]).astype(self.dtype)
|
||||
out = np.square(x)
|
||||
|
||||
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
||||
self.attrs = {}
|
||||
self.outputs = {'Out': out}
|
||||
|
||||
def set_npu(self):
|
||||
self.__class__.use_npu = True
|
||||
self.__class__.no_need_check_grad = True
|
||||
|
||||
def init_dtype(self):
|
||||
self.dtype = np.float16
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output_with_place(self.place, check_dygraph=False, atol=1e-5)
|
||||
|
||||
|
||||
@unittest.skipIf(not paddle.is_compiled_with_npu(),
|
||||
"core is not compiled with NPU")
|
||||
class TestSquareNet(unittest.TestCase):
|
||||
def _test(self, run_npu=True):
|
||||
main_prog = paddle.static.Program()
|
||||
startup_prog = paddle.static.Program()
|
||||
main_prog.random_seed = SEED
|
||||
startup_prog.random_seed = SEED
|
||||
np.random.seed(SEED)
|
||||
|
||||
a_np = np.random.random(size=(32, 32)).astype('float32')
|
||||
b_np = np.random.random(size=(32, 32)).astype('float32')
|
||||
label_np = np.random.randint(2, size=(32, 1)).astype('int64')
|
||||
|
||||
with paddle.static.program_guard(main_prog, startup_prog):
|
||||
a = paddle.static.data(name="a", shape=[32, 32], dtype='float32')
|
||||
b = paddle.static.data(name="b", shape=[32, 32], dtype='float32')
|
||||
label = paddle.static.data(
|
||||
name="label", shape=[32, 1], dtype='int64')
|
||||
|
||||
c = paddle.multiply(a, b)
|
||||
d = paddle.square(c)
|
||||
|
||||
fc_1 = fluid.layers.fc(input=d, size=128)
|
||||
prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax')
|
||||
|
||||
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
||||
loss = fluid.layers.reduce_mean(cost)
|
||||
sgd = fluid.optimizer.SGD(learning_rate=0.01)
|
||||
sgd.minimize(loss)
|
||||
|
||||
if run_npu:
|
||||
place = paddle.NPUPlace(0)
|
||||
else:
|
||||
place = paddle.CPUPlace()
|
||||
|
||||
exe = paddle.static.Executor(place)
|
||||
exe.run(startup_prog)
|
||||
|
||||
print("Start run on {}".format(place))
|
||||
for epoch in range(100):
|
||||
|
||||
pred_res, loss_res = exe.run(
|
||||
main_prog,
|
||||
feed={"a": a_np,
|
||||
"b": b_np,
|
||||
"label": label_np},
|
||||
fetch_list=[prediction, loss])
|
||||
if epoch % 10 == 0:
|
||||
print("Epoch {} | Prediction[0]: {}, Loss: {}".format(
|
||||
epoch, pred_res[0], loss_res))
|
||||
|
||||
return pred_res, loss_res
|
||||
|
||||
def test_npu(self):
|
||||
cpu_pred, cpu_loss = self._test(False)
|
||||
npu_pred, npu_loss = self._test(True)
|
||||
|
||||
self.assertTrue(np.allclose(npu_pred, cpu_pred))
|
||||
self.assertTrue(np.allclose(npu_loss, cpu_loss))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
@ -0,0 +1,154 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import unittest
|
||||
import sys
|
||||
sys.path.append("..")
|
||||
from op_test import OpTest
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
|
||||
paddle.enable_static()
|
||||
SEED = 2021
|
||||
|
||||
|
||||
@unittest.skipIf(not paddle.is_compiled_with_npu(),
|
||||
"core is not compiled with NPU")
|
||||
class TestTanh(OpTest):
|
||||
def setUp(self):
|
||||
self.set_npu()
|
||||
self.op_type = "tanh"
|
||||
self.place = paddle.NPUPlace(0)
|
||||
|
||||
self.init_dtype()
|
||||
np.random.seed(SEED)
|
||||
x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
|
||||
out = np.tanh(x)
|
||||
|
||||
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
||||
self.attrs = {}
|
||||
self.outputs = {'Out': out}
|
||||
|
||||
def set_npu(self):
|
||||
self.__class__.use_npu = True
|
||||
|
||||
def init_dtype(self):
|
||||
self.dtype = np.float32
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output_with_place(self.place, check_dygraph=False)
|
||||
|
||||
# TODO(ascendrc): Add grad test
|
||||
# def test_check_grad(self):
|
||||
# if self.dtype == np.float16:
|
||||
# return
|
||||
# self.check_grad(['X'], 'Out')
|
||||
#
|
||||
|
||||
|
||||
@unittest.skipIf(not paddle.is_compiled_with_npu(),
|
||||
"core is not compiled with NPU")
|
||||
class TestTanhFp16(OpTest):
|
||||
def setUp(self):
|
||||
self.set_npu()
|
||||
self.op_type = "tanh"
|
||||
self.place = paddle.NPUPlace(0)
|
||||
|
||||
self.init_dtype()
|
||||
np.random.seed(SEED)
|
||||
x = np.random.uniform(1, 2, [3, 4]).astype(self.dtype)
|
||||
out = np.tanh(x)
|
||||
|
||||
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
||||
self.attrs = {}
|
||||
self.outputs = {'Out': out}
|
||||
|
||||
def set_npu(self):
|
||||
self.__class__.use_npu = True
|
||||
self.__class__.no_need_check_grad = True
|
||||
|
||||
def init_dtype(self):
|
||||
self.dtype = np.float16
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output_with_place(self.place, check_dygraph=False, atol=1e-3)
|
||||
|
||||
|
||||
@unittest.skipIf(not paddle.is_compiled_with_npu(),
|
||||
"core is not compiled with NPU")
|
||||
class TestTanhNet(unittest.TestCase):
|
||||
def _test(self, run_npu=True):
|
||||
main_prog = paddle.static.Program()
|
||||
startup_prog = paddle.static.Program()
|
||||
main_prog.random_seed = SEED
|
||||
startup_prog.random_seed = SEED
|
||||
np.random.seed(SEED)
|
||||
|
||||
a_np = np.random.random(size=(32, 32)).astype('float32')
|
||||
b_np = np.random.random(size=(32, 32)).astype('float32')
|
||||
label_np = np.random.randint(2, size=(32, 1)).astype('int64')
|
||||
|
||||
with paddle.static.program_guard(main_prog, startup_prog):
|
||||
a = paddle.static.data(name="a", shape=[32, 32], dtype='float32')
|
||||
b = paddle.static.data(name="b", shape=[32, 32], dtype='float32')
|
||||
label = paddle.static.data(
|
||||
name="label", shape=[32, 1], dtype='int64')
|
||||
|
||||
c = paddle.multiply(a, b)
|
||||
d = paddle.tanh(c)
|
||||
|
||||
fc_1 = fluid.layers.fc(input=d, size=128)
|
||||
prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax')
|
||||
|
||||
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
||||
loss = fluid.layers.reduce_mean(cost)
|
||||
sgd = fluid.optimizer.SGD(learning_rate=0.01)
|
||||
sgd.minimize(loss)
|
||||
|
||||
if run_npu:
|
||||
place = paddle.NPUPlace(0)
|
||||
else:
|
||||
place = paddle.CPUPlace()
|
||||
|
||||
exe = paddle.static.Executor(place)
|
||||
exe.run(startup_prog)
|
||||
|
||||
print("Start run on {}".format(place))
|
||||
for epoch in range(100):
|
||||
|
||||
pred_res, loss_res = exe.run(
|
||||
main_prog,
|
||||
feed={"a": a_np,
|
||||
"b": b_np,
|
||||
"label": label_np},
|
||||
fetch_list=[prediction, loss])
|
||||
if epoch % 10 == 0:
|
||||
print("Epoch {} | Prediction[0]: {}, Loss: {}".format(
|
||||
epoch, pred_res[0], loss_res))
|
||||
|
||||
return pred_res, loss_res
|
||||
|
||||
def test_npu(self):
|
||||
cpu_pred, cpu_loss = self._test(False)
|
||||
npu_pred, npu_loss = self._test(True)
|
||||
|
||||
self.assertTrue(np.allclose(npu_pred, cpu_pred))
|
||||
self.assertTrue(np.allclose(npu_loss, cpu_loss))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue