|
|
|
@ -17,6 +17,15 @@ limitations under the License. */
|
|
|
|
|
#include "paddle/math/Vector.h"
|
|
|
|
|
|
|
|
|
|
namespace paddle {
|
|
|
|
|
/**
|
|
|
|
|
* Cosine Similarity for CpuMatrix
|
|
|
|
|
*
|
|
|
|
|
* \param out_mat, output value, size: nSamples * 1.
|
|
|
|
|
* \param in1_mat, input value 1, size: nSamples * dim.
|
|
|
|
|
* \param in2_mat, input value 2, size: n2 * dim (n2 == 1 or n2 == nSamples).
|
|
|
|
|
* \param scale, default 1.0
|
|
|
|
|
*
|
|
|
|
|
*/
|
|
|
|
|
template <>
|
|
|
|
|
void CosSimForward<DEVICE_TYPE_CPU>(CpuMatrix* out_mat,
|
|
|
|
|
const CpuMatrix* in1_mat,
|
|
|
|
@ -48,6 +57,13 @@ void CosSimForward<DEVICE_TYPE_CPU>(CpuMatrix* out_mat,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Cosine Similarity
|
|
|
|
|
* for each row i,
|
|
|
|
|
* out[i] = scale * cos(input1[i], input2[i])
|
|
|
|
|
* = scale * <input1[i], input2[i]>/sqrt(|input1[i]|^2 * |input2[i]|^2)
|
|
|
|
|
* when input2 only has one row, then for each row i,
|
|
|
|
|
* out[i] = cos(input1[i], input2[0])
|
|
|
|
|
*
|
|
|
|
|
* \param inputs[0] input matrix 1, size: nSamples * dim.
|
|
|
|
|
* \param inputs[1] input matrix 2, size: n2 * dim (n2 == 1 or n2 == nSamples).
|
|
|
|
|
* \param outputs[0] output matrix, size : nSamples * 1.
|
|
|
|
@ -85,6 +101,20 @@ private:
|
|
|
|
|
real scale_;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Cosine Similarity Derivative for CpuMatrix
|
|
|
|
|
*
|
|
|
|
|
* \param in1_grad forward input grad 1, size: nSamples * dim.
|
|
|
|
|
* \param in2_grad forward input grad 2,
|
|
|
|
|
* size: n2 * dim (n2 == 1 or n2 == nSamples).
|
|
|
|
|
*
|
|
|
|
|
* \param out_grad backward loss output grad, size : nSamples * 1.
|
|
|
|
|
* \param out_val forward output value, size: nSamples * 1.
|
|
|
|
|
* \param in1_val forward input value 1, size: nSamples * dim.
|
|
|
|
|
* \param in2_val forward input value 2,
|
|
|
|
|
* size: n2 * dim (n2 == 1 or n2 == nSamples).
|
|
|
|
|
* \param scale, default 1.0
|
|
|
|
|
*/
|
|
|
|
|
template <>
|
|
|
|
|
void CosSimBackward<DEVICE_TYPE_CPU>(const CpuMatrix* out_grad,
|
|
|
|
|
const CpuMatrix* out_val,
|
|
|
|
@ -146,6 +176,8 @@ void CosSimBackward<DEVICE_TYPE_CPU>(const CpuMatrix* out_grad,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Cosine Similarity backward Derivative
|
|
|
|
|
*
|
|
|
|
|
* \param inouts[0] forward input grad 1, size: nSamples * dim.
|
|
|
|
|
* \param inouts[1] forward input grad 2,
|
|
|
|
|
* size: n2 * dim (n2 == 1 or n2 == nSamples).
|
|
|
|
|