|
|
|
@ -19,6 +19,8 @@ import unittest
|
|
|
|
|
import six
|
|
|
|
|
import numpy as np
|
|
|
|
|
import paddle.fluid.core as core
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
|
import warnings
|
|
|
|
|
|
|
|
|
|
import paddle.fluid.executor as executor
|
|
|
|
|
import paddle.fluid.layers as layers
|
|
|
|
@ -111,6 +113,33 @@ class TestSaveInferenceModel(unittest.TestCase):
|
|
|
|
|
|
|
|
|
|
save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe, program)
|
|
|
|
|
|
|
|
|
|
def test_save_inference_model_with_auc(self):
|
|
|
|
|
MODEL_DIR = "./tmp/inference_model4"
|
|
|
|
|
init_program = Program()
|
|
|
|
|
program = Program()
|
|
|
|
|
|
|
|
|
|
# fake program without feed/fetch
|
|
|
|
|
with program_guard(program, init_program):
|
|
|
|
|
x = layers.data(name='x', shape=[2], dtype='float32')
|
|
|
|
|
y = layers.data(name='y', shape=[1], dtype='float32')
|
|
|
|
|
predict = fluid.layers.fc(input=x, size=2, act='softmax')
|
|
|
|
|
acc = fluid.layers.accuracy(input=predict, label=y)
|
|
|
|
|
auc_var, batch_auc_var, auc_states = fluid.layers.auc(input=predict,
|
|
|
|
|
label=y)
|
|
|
|
|
cost = fluid.layers.cross_entropy(input=predict, label=y)
|
|
|
|
|
avg_cost = fluid.layers.mean(x=cost)
|
|
|
|
|
|
|
|
|
|
place = core.CPUPlace()
|
|
|
|
|
exe = executor.Executor(place)
|
|
|
|
|
exe.run(init_program, feed={}, fetch_list=[])
|
|
|
|
|
with warnings.catch_warnings(record=True) as w:
|
|
|
|
|
warnings.simplefilter("always")
|
|
|
|
|
save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe,
|
|
|
|
|
program)
|
|
|
|
|
expected_warn = "please ensure that you have set the auc states to zeros before saving inference model"
|
|
|
|
|
self.assertTrue(len(w) > 0)
|
|
|
|
|
self.assertTrue(expected_warn == str(w[0].message))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestInstance(unittest.TestCase):
|
|
|
|
|
def test_save_inference_model(self):
|
|
|
|
|