update-doc-pybind
zchen0211 8 years ago
parent e615c84a4d
commit 490ca5f1ae

@ -33,20 +33,20 @@ class PreluOp : public framework::OperatorWithKernel {
}
};
template <typename AttrType>
// template <typename AttrType>
class PreluOpMaker : public framework::OpProtoAndCheckerMaker {
public:
PreluOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The input tensor of prelu operator.").NotInGradient();
AddOutput("Out", "The output tensor of prelu operator.").NotInGradient();
AddInput("X", "The input tensor of prelu operator.");
AddOutput("Out", "The output tensor of prelu operator.");
AddComment(R"DOC(Prelu operator
The equation is:
f(x) = alpha * x , for x < 0
f(x) = x , for x >= 0
)DOC");
AddAttr<AttrType>("alpha", "The scaling factor alpha of prelu.")
AddAttr<float>("alpha", "The scaling factor alpha of prelu.")
.SetDefault(0.0);
}
};
@ -58,8 +58,10 @@ class PreluGradOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
auto X_grad = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
auto X = ctx.Input<Tensor>("X");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null.");
auto *X_grad =
ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
auto *X = ctx.Input<framework::Tensor>("X");
X_grad->Resize(X->dims());
}
@ -70,7 +72,7 @@ class PreluGradOp : public framework::OperatorWithKernel {
namespace ops = paddle::operators;
REGISTER_OP(prelu, ops::PreluOp, ops::PreluOpMaker<float>, prelu_grad,
REGISTER_OP(prelu, ops::PreluOp, ops::PreluOpMaker, prelu_grad,
ops::PreluGradOp);
REGISTER_OP_CPU_KERNEL(prelu,
ops::PreluKernel<paddle::platform::CPUPlace, float>);

@ -1,21 +0,0 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/prelu_op.h"
REGISTER_OP_GPU_KERNEL(
prelu, paddle::operators::PreluKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(
prelu_grad,
paddle::operators::PreluGradKernel<paddle::platform::GPUPlace, float>);

@ -24,7 +24,7 @@ template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename Place, typename T, typename AttrType = T>
template <typename Place, typename T>
class PreluKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
@ -33,30 +33,29 @@ class PreluKernel : public framework::OpKernel {
Out->mutable_data<T>(context.GetPlace());
auto alpha = static_cast<T>(context.Attr<AttrType>("alpha"));
auto alpha = static_cast<T>(context.Attr<float>("alpha"));
auto X_vec = EigenVector<T>::Flatten(*X);
auto Out_vec = EigenVector<T>::Flatten(*Out);
auto place = context.GetEigenDevice<Place>();
Out_vec.device(place) = X_vec.cwiseMax(0.f) + X_vec.cwiseMin(0.f) * alpha;
// auto place = context.GetEigenDevice<Place>();
// Out_vec.device(place)
Out_vec = X_vec.cwiseMax(0.f) + X_vec.cwiseMin(0.f) * alpha;
}
};
template <typename Place, typename T, typename AttrType = T>
template <typename Place, typename T>
class PreluGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* dX = context.Output<Tensor>(framework::GradVarName("X"));
auto* dO = context.Input<Tensor>(framework::GradVarName("Out"));
auto* Out = context.Output<Tensor>("Out");
auto* Out = context.Input<Tensor>("Out");
auto alpha = static_cast<T>(context.Attr<AttrType>("alpha"));
auto alpha = static_cast<T>(context.Attr<float>("alpha"));
dX->mutable_data<T>(context.GetPlace());
for (int i = 0; i < dX->numel(); ++i) {
if (Out->data<T>()[i] > 0) {
dX->data<T>()[i] = dO->data<T>()[i];

@ -6,11 +6,12 @@ from op_test import OpTest
class PreluTest(OpTest):
def setUp(self):
self.op_type = "prelu"
self.inputs = {'X': np.random.random((10, 10)).astype("float32")}
self.inputs = {'X': np.random.normal(size=(3, 5)).astype("float32")}
self.attrs = {'alpha': 0.1}
out_np = np.maximum(self.inputs['X'], 0.)
out_np = out_np + np.minimum(self.inputs['X'], 0.) * self.attrs['alpha']
self.outputs = {'Out': self.inputs['X'] * self.attrs['scale']}
assert out_np is not self.inputs['X']
self.outputs = {'Out': out_np}
def test_check_output(self):
self.check_output()

Loading…
Cancel
Save