add fleet_desc config feature & multi_sparse table, test=develop (#18827)
add fleet_desc config feature & multi_sparse table,padding_in_crf
parent
1799c257ad
commit
4a3c4b8fa4
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,148 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
import os
|
||||
import signal
|
||||
import subprocess
|
||||
import time
|
||||
import unittest
|
||||
import sys
|
||||
from op_test import OpTest
|
||||
from paddle.fluid.trainer_desc import DistMultiTrainer
|
||||
from paddle.fluid.device_worker import DownpourSGD
|
||||
from google.protobuf import text_format
|
||||
import paddle.fluid.incubate.fleet.parameter_server.pslib.ps_pb2 as pslib
|
||||
|
||||
|
||||
class TestListenAndServOp(OpTest):
|
||||
def setUp(self):
|
||||
pass
|
||||
|
||||
def test_device_work_use_cvm(self):
|
||||
if sys.platform == 'win32' or sys.platform == 'sys.platform':
|
||||
pass
|
||||
else:
|
||||
print(sys.platform)
|
||||
cmd = "wget --no-check-certificate https://pslib.bj.bcebos.com/fleet_desc.prototxt"
|
||||
os.system(cmd)
|
||||
x = fluid.layers.data(name='x', shape=[1], dtype='float32')
|
||||
x_emb = fluid.layers.embedding(
|
||||
input=x, size=[1, 2], is_distributed=True)
|
||||
y_predict = fluid.layers.fc(input=x_emb, size=1, act=None)
|
||||
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
|
||||
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
|
||||
avg_cost = fluid.layers.mean(cost)
|
||||
|
||||
ps_param = pslib.PSParameter()
|
||||
with open("fleet_desc.prototxt") as f:
|
||||
text_format.Merge(f.read(), ps_param)
|
||||
fleet_desc = ps_param
|
||||
exe = fluid.Executor(fluid.CPUPlace())
|
||||
exe.run(fluid.default_startup_program())
|
||||
|
||||
opt_info = {}
|
||||
main_program = fluid.default_main_program()
|
||||
program_id = str(id(avg_cost.block.program))
|
||||
program_configs = {}
|
||||
program_configs[program_id] = {
|
||||
"pull_sparse": [0],
|
||||
"push_sparse": [0]
|
||||
}
|
||||
program_configs[program_id]["pull_dense"] = [1]
|
||||
program_configs[program_id]["push_dense"] = [1]
|
||||
|
||||
worker_skipped_ops = ["lookup_table", "lookup_table_grad"]
|
||||
opt_info["program_configs"] = program_configs
|
||||
opt_info["trainer"] = "DistMultiTrainer"
|
||||
opt_info["device_worker"] = "DownpourSGD"
|
||||
opt_info["optimizer"] = "DownpourSGD"
|
||||
opt_info["fleet_desc"] = ps_param
|
||||
opt_info["worker_skipped_ops"] = worker_skipped_ops
|
||||
opt_info["use_cvm"] = True
|
||||
opt_info["scale_datanorm"] = -1
|
||||
opt_info["dump_slot"] = False
|
||||
|
||||
main_program._fleet_opt = opt_info
|
||||
trainer = DistMultiTrainer()
|
||||
trainer._set_program(main_program)
|
||||
device_worker = DownpourSGD()
|
||||
device_worker._set_fleet_desc(fleet_desc)
|
||||
trainer._set_device_worker(device_worker)
|
||||
trainer._set_fleet_desc(fleet_desc)
|
||||
trainer._gen_trainer_desc()
|
||||
cmd = "rm fleet_desc.prototxt*"
|
||||
os.system(cmd)
|
||||
|
||||
def test_device_work(self):
|
||||
if sys.platform == 'win32' or sys.platform == 'sys.platform':
|
||||
pass
|
||||
else:
|
||||
print(sys.platform)
|
||||
cmd = "wget --no-check-certificate https://pslib.bj.bcebos.com/fleet_desc.prototxt"
|
||||
os.system(cmd)
|
||||
x = fluid.layers.data(name='x', shape=[1], dtype='float32')
|
||||
x_emb = fluid.layers.embedding(
|
||||
input=x, size=[1, 2], is_distributed=True)
|
||||
y_predict = fluid.layers.fc(input=x_emb, size=1, act=None)
|
||||
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
|
||||
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
|
||||
avg_cost = fluid.layers.mean(cost)
|
||||
|
||||
ps_param = pslib.PSParameter()
|
||||
with open("fleet_desc.prototxt") as f:
|
||||
text_format.Merge(f.read(), ps_param)
|
||||
fleet_desc = ps_param
|
||||
exe = fluid.Executor(fluid.CPUPlace())
|
||||
exe.run(fluid.default_startup_program())
|
||||
|
||||
opt_info = {}
|
||||
main_program = fluid.default_main_program()
|
||||
program_id = str(id(avg_cost.block.program))
|
||||
program_configs = {}
|
||||
program_configs[program_id] = {
|
||||
"pull_sparse": [0],
|
||||
"push_sparse": [0]
|
||||
}
|
||||
program_configs[program_id]["pull_dense"] = [1]
|
||||
program_configs[program_id]["push_dense"] = [1]
|
||||
|
||||
worker_skipped_ops = ["lookup_table", "lookup_table_grad"]
|
||||
opt_info["program_configs"] = program_configs
|
||||
opt_info["trainer"] = "DistMultiTrainer"
|
||||
opt_info["device_worker"] = "DownpourSGD"
|
||||
opt_info["optimizer"] = "DownpourSGD"
|
||||
opt_info["fleet_desc"] = ps_param
|
||||
opt_info["worker_skipped_ops"] = worker_skipped_ops
|
||||
opt_info["use_cvm"] = False
|
||||
opt_info["scale_datanorm"] = -1
|
||||
opt_info["dump_slot"] = False
|
||||
|
||||
main_program._fleet_opt = opt_info
|
||||
trainer = DistMultiTrainer()
|
||||
trainer._set_program(main_program)
|
||||
device_worker = DownpourSGD()
|
||||
device_worker._set_fleet_desc(fleet_desc)
|
||||
trainer._set_device_worker(device_worker)
|
||||
trainer._set_fleet_desc(fleet_desc)
|
||||
trainer._gen_trainer_desc()
|
||||
cmd = "rm fleet_desc.prototxt*"
|
||||
os.system(cmd)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue