parent
bca1fce688
commit
4a94f8a447
File diff suppressed because it is too large
Load Diff
@ -1,121 +0,0 @@
|
||||
import math
|
||||
import paddle.v2 as paddle
|
||||
|
||||
|
||||
def db_lstm(word_dict_len, label_dict_len, pred_len):
|
||||
mark_dict_len = 2
|
||||
word_dim = 32
|
||||
mark_dim = 5
|
||||
hidden_dim = 512
|
||||
depth = 8
|
||||
|
||||
#8 features
|
||||
def d_type(size):
|
||||
return paddle.data_type.integer_value_sequence(size)
|
||||
|
||||
word = paddle.layer.data(name='word_data', type=d_type(word_dict_len))
|
||||
predicate = paddle.layer.data(name='verb_data', type=d_type(pred_len))
|
||||
|
||||
ctx_n2 = paddle.layer.data(name='ctx_n2_data', type=d_type(word_dict_len))
|
||||
ctx_n1 = paddle.layer.data(name='ctx_n1_data', type=d_type(word_dict_len))
|
||||
ctx_0 = paddle.layer.data(name='ctx_0_data', type=d_type(word_dict_len))
|
||||
ctx_p1 = paddle.layer.data(name='ctx_p1_data', type=d_type(word_dict_len))
|
||||
ctx_p2 = paddle.layer.data(name='ctx_p2_data', type=d_type(word_dict_len))
|
||||
mark = paddle.layer.data(name='mark_data', type=d_type(mark_dict_len))
|
||||
|
||||
target = paddle.layer.data(name='target', type=d_type(label_dict_len))
|
||||
|
||||
default_std = 1 / math.sqrt(hidden_dim) / 3.0
|
||||
|
||||
emb_para = paddle.attr.Param(name='emb', initial_std=0., learning_rate=0.)
|
||||
std_0 = paddle.attr.Param(initial_std=0.)
|
||||
std_default = paddle.attr.Param(initial_std=default_std)
|
||||
|
||||
predicate_embedding = paddle.layer.embedding(
|
||||
size=word_dim,
|
||||
input=predicate,
|
||||
param_attr=paddle.attr.Param(
|
||||
name='vemb', initial_std=default_std))
|
||||
mark_embedding = paddle.layer.embedding(
|
||||
size=mark_dim, input=mark, param_attr=std_0)
|
||||
|
||||
word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
|
||||
emb_layers = [
|
||||
paddle.layer.embedding(
|
||||
size=word_dim, input=x, param_attr=emb_para) for x in word_input
|
||||
]
|
||||
emb_layers.append(predicate_embedding)
|
||||
emb_layers.append(mark_embedding)
|
||||
|
||||
hidden_0 = paddle.layer.mixed(
|
||||
size=hidden_dim,
|
||||
bias_attr=std_default,
|
||||
input=[
|
||||
paddle.layer.full_matrix_projection(
|
||||
input=emb, param_attr=std_default) for emb in emb_layers
|
||||
])
|
||||
|
||||
mix_hidden_lr = 1e-3
|
||||
lstm_para_attr = paddle.attr.Param(initial_std=0.0, learning_rate=1.0)
|
||||
hidden_para_attr = paddle.attr.Param(
|
||||
initial_std=default_std, learning_rate=mix_hidden_lr)
|
||||
|
||||
lstm_0 = paddle.layer.lstmemory(
|
||||
input=hidden_0,
|
||||
act=paddle.activation.Relu(),
|
||||
gate_act=paddle.activation.Sigmoid(),
|
||||
state_act=paddle.activation.Sigmoid(),
|
||||
bias_attr=std_0,
|
||||
param_attr=lstm_para_attr)
|
||||
|
||||
#stack L-LSTM and R-LSTM with direct edges
|
||||
input_tmp = [hidden_0, lstm_0]
|
||||
|
||||
for i in range(1, depth):
|
||||
mix_hidden = paddle.layer.mixed(
|
||||
size=hidden_dim,
|
||||
bias_attr=std_default,
|
||||
input=[
|
||||
paddle.layer.full_matrix_projection(
|
||||
input=input_tmp[0], param_attr=hidden_para_attr),
|
||||
paddle.layer.full_matrix_projection(
|
||||
input=input_tmp[1], param_attr=lstm_para_attr)
|
||||
])
|
||||
|
||||
lstm = paddle.layer.lstmemory(
|
||||
input=mix_hidden,
|
||||
act=paddle.activation.Relu(),
|
||||
gate_act=paddle.activation.Sigmoid(),
|
||||
state_act=paddle.activation.Sigmoid(),
|
||||
reverse=((i % 2) == 1),
|
||||
bias_attr=std_0,
|
||||
param_attr=lstm_para_attr)
|
||||
|
||||
input_tmp = [mix_hidden, lstm]
|
||||
|
||||
feature_out = paddle.layer.mixed(
|
||||
size=label_dict_len,
|
||||
bias_attr=std_default,
|
||||
input=[
|
||||
paddle.layer.full_matrix_projection(
|
||||
input=input_tmp[0], param_attr=hidden_para_attr),
|
||||
paddle.layer.full_matrix_projection(
|
||||
input=input_tmp[1], param_attr=lstm_para_attr)
|
||||
], )
|
||||
|
||||
crf_cost = paddle.layer.crf(size=label_dict_len,
|
||||
input=feature_out,
|
||||
label=target,
|
||||
param_attr=paddle.attr.Param(
|
||||
name='crfw',
|
||||
initial_std=default_std,
|
||||
learning_rate=mix_hidden_lr))
|
||||
|
||||
crf_dec = paddle.layer.crf_decoding(
|
||||
name='crf_dec_l',
|
||||
size=label_dict_len,
|
||||
input=feature_out,
|
||||
label=target,
|
||||
param_attr=paddle.attr.Param(name='crfw'))
|
||||
|
||||
return crf_cost, crf_dec
|
Loading…
Reference in new issue