Merge branch 'develop' of https://github.com/PaddlePaddle/paddle into add-GRUOp-dev

mobile_baidu
guosheng 8 years ago
commit 4b8bcf320f

@ -30,6 +30,7 @@ addons:
- automake
- libtool
- ccache
ssh_known_hosts: 52.76.173.135
before_install:
- if [[ "$JOB" == "check_style" ]]; then sudo ln -s /usr/bin/clang-format-3.8 /usr/bin/clang-format; fi
# Paddle is using protobuf 3.1 currently. Protobuf 3.2 breaks the compatibility. So we specify the python
@ -42,6 +43,14 @@ script:
- |
timeout 2580 paddle/scripts/travis/${JOB}.sh # 43min timeout
RESULT=$?; if [ $RESULT -eq 0 ] || [ $RESULT -eq 142 ]; then true; else false; fi;
- |
if [[ "$JOB" != "build_doc" ]]; then exit 0; fi;
if [[ "$TRAVIS_PULL_REQUEST" != "false" ]]; then exit 0; fi;
if [[ "$TRAVIS_BRANCH" != "develop" && ! "$TRAVIS_BRANCH" =~ ^v[[:digit:]]+\.[[:digit:]]+(\.[[:digit:]]+)?(-\S*)?$ ]]; then exit 0; fi;
export DEPLOY_DOCS_SH=https://raw.githubusercontent.com/PaddlePaddle/PaddlePaddle.org/master/scripts/deploy/deploy_docs.sh
export DOCS_DIR=`pwd`
cd ..
curl $DEPLOY_DOCS_SH | bash -s $CONTENT_DEC_PASSWD $TRAVIS_BRANCH $DOCS_DIR $DOCS_DIR/build/doc
notifications:
email:
on_success: change

@ -0,0 +1,48 @@
# Benchmark
Machine:
- Server
- Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz, 2 Sockets, 20 Cores per socket
- Laptop
- DELL XPS15-9560-R1745: i7-7700HQ 8G 256GSSD
- i5 MacBook Pro (Retina, 13-inch, Early 2015)
- Desktop
- i7-6700k
System: CentOS release 6.3 (Final), Docker 1.12.1.
PaddlePaddle: paddlepaddle/paddle:latest (TODO: will rerun after 0.11.0)
- MKL-DNN tag v0.10
- MKLML 2018.0.20170720
- OpenBLAS v0.2.20
On each machine, we will test and compare the performance of training on single node using MKL-DNN / MKLML / OpenBLAS respectively.
## Benchmark Model
### Server
Test on batch size 64, 128, 256 on Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz
Input image size - 3 * 224 * 224, Time: images/second
- VGG-19
| BatchSize | 64 | 128 | 256 |
|--------------|-------| -----| --------|
| OpenBLAS | 7.82 | 8.62 | 10.34 |
| MKLML | 11.02 | 12.86 | 15.33 |
| MKL-DNN | 27.69 | 28.8 | 29.27 |
chart on batch size 128
TBD
- ResNet
- GoogLeNet
### Laptop
TBD
### Desktop
TBD

Binary file not shown.

After

Width:  |  Height:  |  Size: 620 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 156 B

@ -0,0 +1,72 @@
# Averaging Parameter in PaddlePaddle
## Why Averaging
In a large scale machine learning setup where the size of the training data is huge, it could take us a large number of iterations over the training data before we can achieve the optimal values of parameters of our model. Looking at the problem setup, it is desirable if we can obtain the optimal values of parameters by going through the data in as few passes as we can.
Polyak and Juditsky (1992) showed that the test performance of simple average of parameters obtained by Stochastic Gradient Descent (SGD) is as good as that of parameter values that are obtained by training the model over and over again, over the training dataset.
Hence, to accelerate the speed of Stochastic Gradient Descent, Averaged Stochastic Gradient Descent (ASGD) was proposed in Polyak and Juditsky (1992). For ASGD, the running average of parameters obtained by SGD, is used as the estimator for <img src="./images/theta_star.gif"/><br/> . The averaging is done as follows:
<img src="./images/asgd.gif" align="center"/><br/>
We propose averaging for any optimizer similar to how ASGD performs it, as mentioned above.
### How to perform Parameter Averaging in PaddlePaddle
Parameter Averaging in PaddlePaddle works in the following way during training :
1. It will take in an instance of a normal optimizer as an input, e.g. RMSPropOptimizer
2. The optimizer itself is responsible for updating the parameters.
3. The ParameterAverageOptimizer maintains a separate copy of the parameters for itself:
1. In concept, the values of this copy are the average of the values of the parameters in the most recent N batches.
2. However, saving all the N instances of the parameters in memory is not feasible.
3. Therefore, an approximation algorithm is used.
Hence, overall we have have two copies of the parameters: one for the optimizer itself, and one for the ParameterAverageOptimizer. The former should be used in back propagation, while the latter should be used during testing and should be saved.
During the testing/ saving the model phase, we perform the following steps:
1. Perform the delayed operations.
2. Save current values of the parameters to a temporary variable.
3. Replace the values of the parameters with the averaged values.
4. Perform testing and/or save the parameters.
5. Restore the values of the parameters once done.
### How to implement Averaging of Parameter in PaddlePaddle
We can add the ParameterAverageOptimizer op to the graph through Python API. Using this approach, we manually add this op to the graph and direct the output of the optimizer op to this op during training.
**Advantages**:
- Allows for greater flexibility to the users of PaddlePaddle. Using this approach, the users can plug different optimizers into ParameterAverageOptimizer by passing in the optimizer to the op.
- Makes it easy for the users to customize and extend the framework.
**Disadvantages**:
- Implementation requires re-writing the averaging methodology in Python.
### Low-Level implementation
In the new design, we propose to create a new operation for averaging parameter updates (ParameterAverageOptimizer). For now, we can add an op that takes in the following as input:
- the optimizer
- the window_size to keep the updates
The ParameterAverageOptimizer op can be like any other operator with its own CPU/GPU implementation either using Eigen or separate CPU and GPU kernels. As the initial implementation, we can implement the kernel using Eigen following the abstraction pattern implemented for [Operators](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/rmsprop_op.h). We also want to support the case when the Trainer/Optimizer runs on the GPU while ParameterAverageOptimizer runs on a CPU.
The idea of building an op for averaging is in sync with the refactored PaddlePaddle philosophy of using operators to represent any computation unit. The way the op will be added to the computation graph will be decided by the [layer functions](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/python_api.md#layer-function) in Python API.
### Python API implementation for ParameterAverageOptimizer
Based on Polyak and Juditsky (1992), we can generalize the averaging of updates to any optimizer. The input to the op would be the following:
- Any optimizer (RMSProp , AdaGrad etc.)
- A window size. The op keeps accumulating updated parameter values over a window of N batches and takes an average. Move the averaged value to a buffer when window is full to avoid loss of precision.
Using the ParameterAverageOptimizer op, any user can add the operation to their computation graphs. However, this will require a lot of lines of code and we should design Python APIs that support averaging. As per the PaddlePaddle [Python API design](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/python_api.md), the layer functions are responsible for creating operators, operator parameters and variables. Since ParameterAverageOptimizer will be an operator, it makes sense to create it in the layer functions.
We will have a wrapper written in Python that will support the functionality and implement the actual core computation in C++ core as we have done for other [Optimizers](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/rmsprop_op.cc)
#### Creation of the ParameterAverageOptimizer operator
There are two ways for creating the ParameterAverageOptimizer op:
1. We create the op immediately while building the computation graph.
2. We add the op in a lazy manner, just before the backward pass, similar to the way the optimization ops are added.
The proposal is to add the op immediately while building the computation graph.
#### High-level API
In PaddlePaddle Python API, users will primarily rely on [layer functions](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/python_api.md#layer-function) to create neural network layers. Hence, we also need to provide parameter average functionality in layer functions.

@ -75,7 +75,7 @@ PaddlePaddle目前支持8种learning_rate_schedule这8种learning_rate_schedu
optimizer = paddle.optimizer.Adam(
learning_rate=1e-3,
learning_rate_schedule="manual",
learning_rate_schedule="pass_manual",
learning_rate_args="1:1.0,2:0.9,3:0.8",)
在该示例中当已训练pass数小于等于1时学习率为 :code:`1e-3 * 1.0`当已训练pass数大于1小于等于2时学习率为 :code:`1e-3 * 0.9`当已训练pass数大于2时学习率为 :code:`1e-3 * 0.8`

@ -0,0 +1,153 @@
# Build PaddlePaddle for Android
There are two approaches to build PaddlePaddle for Android: using Docker and on Linux without Docker.
## Cross-Compiling Using Docker
Docker-based cross-compiling is the recommended approach because Docker runs on all major operating systems, including Linux, Mac OS X, and Windows.
### Build the Docker Image
The following steps pack all the tools that we need to build PaddlePaddle into a Docker image.
```bash
$ git clone https://github.com/PaddlePaddle/Paddle.git
$ cd Paddle
$ docker build -t paddle:dev-android . -f Dockerfile.android
```
### Build the Inference Library
We can run the Docker image we just created to build the inference library of PaddlePaddle for Android using the command below:
```bash
$ docker run -it --rm -v $PWD:/paddle -e "ANDROID_ABI=armeabi-v7a" -e "ANDROID_API=21" paddle:dev-android
```
The Docker image accepts two arguments `ANDROID_ABI` and `ANDROID_API`:
| Argument | Optional Values | Default |
|-----------------|-------------------------|---------|
|`ANDROID_ABI` |`armeabi-v7a, arm64-v8a` | `armeabi-v7a` |
|`ANDROID_API` |`>= 21` | `21` |
The ARM-64 architecture (`arm64-v8a`) requires at least level 21 of Android API.
The default entry-point of the Docker image, [`paddle/scripts/docker/build_android.sh`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/scripts/docker/build_android.sh) generates the [Android cross-compiling standalone toolchain](https://developer.android.com/ndk/guides/standalone_toolchain.html) based on the argument: `ANDROID_ABI` or `ANDROID_API`. For information about other configuration arguments, please continue reading.
The above command generates and outputs the inference library in `$PWD/install_android` and puts third-party libraries in `$PWD/install_android/third_party`.
## Cross-Compiling on Linux
The Linux-base approach to cross-compile is to run steps in `Dockerfile.android` manually on a Linux x64 computer.
### Setup the Environment
To build for Android's, we need [Android NDK](
https://developer.android.com/ndk/downloads/index.html):
```bash
wget -q https://dl.google.com/android/repository/android-ndk-r14b-linux-x86_64.zip
unzip -q android-ndk-r14b-linux-x86_64.zip
```
Android NDK includes everything we need to build the [*standalone toolchain*](https://developer.android.com/ndk/guides/standalone_toolchain.html), which in then used to build PaddlePaddle for Android. (We plan to remove the intermediate stage of building the standalone toolchain in the near future.)
- To build the standalone toolchain for `armeabi-v7a` and Android API level 21:
```bash
your/path/to/android-ndk-r14b-linux-x86_64/build/tools/make-standalone-toolchain.sh \
--arch=arm --platform=android-21 --install-dir=your/path/to/arm_standalone_toolchain
```
The generated standalone toolchain will be in `your/path/to/arm_standalone_toolchain`.
- To build the standalone toolchain for `arm64-v8a` and Android API level 21:
```bash
your/path/to/android-ndk-r14b-linux-x86_64/build/tools/make-standalone-toolchain.sh \
--arch=arm64 --platform=android-21 --install-dir=your/path/to/arm64_standalone_toolchain
```
The generated standalone toolchain will be in `your/path/to/arm64_standalone_toolchain`.
**Please be aware that the minimum level of Android API required by PaddlePaddle is 21.**
### Cross-Compiling Arguments
CMake supports [choosing the toolchain](https://cmake.org/cmake/help/v3.0/manual/cmake-toolchains.7.html#cross-compiling). PaddlePaddle provides [`android.cmake`](https://github.com/PaddlePaddle/Paddle/blob/develop/cmake/cross_compiling/android.cmake), which configures the Android cross-compiling toolchain for CMake. `android.cmake` is not required for CMake >= 3.7, which support Android cross-compiling. PaddlePaddle detects the CMake version, for those newer than 3.7, it uses [the official version](https://cmake.org/cmake/help/v3.7/manual/cmake-toolchains.7.html#cross-compiling).
Some other CMake arguments you need to know:
- `CMAKE_SYSTEM_NAME` must be `Android`. This tells PaddlePaddle's CMake system to cross-compile third-party dependencies. This also changes some other CMake arguments like `WITH_GPU=OFF`, `WITH_AVX=OFF`, `WITH_PYTHON=OFF`, and `WITH_RDMA=OFF`.
- `WITH_C_API` must be `ON`, to build the C-based inference library for Android.
- `WITH_SWIG_PY` must be `OFF` because the Android platform doesn't support SWIG-based API.
Some Android-specific arguments:
- `ANDROID_STANDALONE_TOOLCHAIN`: the absolute path of the Android standalone toolchain, or the path relative to the CMake build directory. PaddlePaddle's CMake extensions would derive the cross-compiler, sysroot and Android API level from this argument.
- `ANDROID_TOOLCHAIN`: could be `gcc` or `clang`. The default value is `clang`.
- For CMake >= 3.7, it should anyway be `clang`. For older versions, it could be `gcc`.
- Android's official `clang` requires `glibc` >= 2.15.
- `ANDROID_ABI`: could be `armeabi-v7a` or `arm64-v8a`. The default value is `armeabi-v7a`.
- `ANDROID_NATIVE_API_LEVEL`: could be derived from the value of `ANDROID_STANDALONE_TOOLCHAIN`.
- `ANROID_ARM_MODE`:
- could be `ON` or `OFF`, and defaults to `ON`, when `ANDROID_ABI=armeabi-v7a`;
- no need to specify when `ANDROID_ABI=arm64-v8a`.
- `ANDROID_ARM_NEON`: indicates if to use NEON instructions.
- could be `ON` or `OFF`, and defaults to `ON`, when `ANDROID_ABI=armeabi-v7a`;
- no need to specify when `ANDROID_ABI=arm64-v8a`.
Other useful arguments:
- `USE_EIGEN_FOR_BLAS`: indicates if using Eigen. Could be `ON` or `OFF`, defaults to `OFF`.
- `HOST_C/CXX_COMPILER`: specifies the host compiler, which is used to build the host-specific protoc and target-specific OpenBLAS. It defaults to the value of the environment variable `CC`, or `cc`.
Some frequent configurations for your reference:
```bash
cmake -DCMAKE_SYSTEM_NAME=Android \
-DANDROID_STANDALONE_TOOLCHAIN=your/path/to/arm_standalone_toolchain \
-DANDROID_ABI=armeabi-v7a \
-DANDROID_ARM_NEON=ON \
-DANDROID_ARM_MODE=ON \
-DUSE_EIGEN_FOR_BLAS=ON \
-DCMAKE_INSTALL_PREFIX=your/path/to/install \
-DWITH_C_API=ON \
-DWITH_SWIG_PY=OFF \
..
```
```
cmake -DCMAKE_SYSTEM_NAME=Android \
-DANDROID_STANDALONE_TOOLCHAIN=your/path/to/arm64_standalone_toolchain \
-DANDROID_ABI=arm64-v8a \
-DUSE_EIGEN_FOR_BLAS=OFF \
-DCMAKE_INSTALL_PREFIX=your/path/to/install \
-DWITH_C_API=ON \
-DWITH_SWIG_PY=OFF \
..
```
There are some other arguments you might want to configure.
- `CMAKE_BUILD_TYPE=MinSizeRel` minimizes the size of library.
- `CMAKE_BUILD_TYPE-Release` optimizes the runtime performance.
Our own tip for performance optimization to use clang and Eigen or OpenBLAS:
- `CMAKE_BUILD_TYPE=Release`
- `ANDROID_TOOLCHAIN=clang`
- `USE_EIGEN_BLAS=ON` for `armeabi-v7a`, or `USE_EIGEN_FOR_BLAS=OFF` for `arm64-v8a`.
### Build and Install
After running `cmake`, we can run `make; make install` to build and install.
Before building, you might want to remove the `third_party` and `build` directories including pre-built libraries for other architectures.
After buildingin the directory `CMAKE_INSTALL_PREFIX`, you will find three sub-directories:
- `include`: the header file of the inference library,
- `lib`: the inference library built for various Android ABIs,
- `third_party`: dependent third-party libraries built for Android.

@ -1,7 +1,7 @@
# 构建Android平台上的PaddlePaddle库
用户可通过如下两种方式交叉编译Android平台上适用的PaddlePaddle库
- 基于Docker容器的编译方式
- 基于Docker容器的编译方式
- 基于Linux交叉编译环境的编译方式
## 基于Docker容器的编译方式
@ -26,14 +26,14 @@ Android的Docker开发镜像向用户提供两个可配置的参数
|`ANDROID_API` |`>= 21` | `21` |
- 编译`armeabi-v7a``Android API 21`的PaddlePaddle库
```bash
$ docker run -it --rm -v $PWD:/paddle -e "ANDROID_ABI=armeabi-v7a" -e "ANDROID_API=21" username/paddle-android:dev
```
```bash
$ docker run -it --rm -v $PWD:/paddle -e "ANDROID_ABI=armeabi-v7a" -e "ANDROID_API=21" username/paddle-android:dev
```
- 编译`arm64-v8a``Android API 21`的PaddlePaddle库
```bash
$ docker run -it --rm -v $PWD:/paddle -e "ANDROID_ABI=arm64-v8a" -e "ANDROID_API=21" username/paddle-android:dev
```
- 编译`arm64-v8a``Android API 21`的PaddlePaddle库
```bash
$ docker run -it --rm -v $PWD:/paddle -e "ANDROID_ABI=arm64-v8a" -e "ANDROID_API=21" username/paddle-android:dev
```
执行上述`docker run`命令时,容器默认执行[paddle/scripts/docker/build_android.sh](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/scripts/docker/build_android.sh)脚本。该脚本中记录了交叉编译Android版PaddlePaddle库常用的CMake配置并且会根据`ANDROID_ABI`和`ANDROID_API`自动构建独立工具链、进行编译和安装。由于arm64架构要求Android API不小于21。因此当`ANDROID_ABI=arm64-v8a``ANDROID_API<21`Docker使`Android API 21`****DockerPaddlePaddleC-API`$PWD/install_android``$PWD/install_android/third_party`
@ -82,16 +82,16 @@ CMake系统对交叉编译提供了支持[cmake-toolchains](https://cmake.org/cm
Android平台可选配置参数
- `ANDROID_STANDALONE_TOOLCHAIN`独立工具链所在的绝对路径或者相对于构建目录的相对路径。PaddlePaddle的CMake系统将根据该值自动推导和设置需要使用的交叉编译器、sysroot、以及Android API级别否则用户需要在cmake时手动设置这些值。无默认值。
- `ANDROID_TOOLCHAIN`,目标工具链。可设置`gcc/clang`,默认值为`clang`。
- CMake 3.7以上,将会始终使用`clang`工具链CMake 3.7以下,可设置`ANDROID_TOOLCHAIN=gcc`以使用`gcc`工具链。
- `ANDROID_TOOLCHAIN`,目标工具链。可设置`gcc/clang`,默认值为`clang`。
- CMake 3.7以上,将会始终使用`clang`工具链CMake 3.7以下,可设置`ANDROID_TOOLCHAIN=gcc`以使用`gcc`工具链。
- Android官方提供的`clang`编译器要求系统支持`GLIBC 2.15`以上。
- `ANDROID_ABI`目标架构ABI。目前支持`armeabi-v7a`和`arm64-v8a`,默认值为`armeabi-v7a`。
- `ANDROID_NATIVE_API_LEVEL`工具链的Android API级别。若没有显式设置PaddlePaddle将根据`ANDROID_STANDALONE_TOOLCHAIN`的值自动推导得到。
- `ANROID_ARM_MODE`是否使用ARM模式。
- `ANDROID_ABI=armeabi-v7a`时,可设置`ON/OFF`,默认值为`ON`
- `ANROID_ARM_MODE`是否使用ARM模式。
- `ANDROID_ABI=armeabi-v7a`时,可设置`ON/OFF`,默认值为`ON`
- `ANDROID_ABI=arm64-v8a`时,不需要设置。
- `ANDROID_ARM_NEON`是否使用NEON指令。
- `ANDROID_ABI=armeabi-v7a`时,可设置`ON/OFF`,默认值为`ON`
- `ANDROID_ARM_NEON`是否使用NEON指令。
- `ANDROID_ABI=armeabi-v7a`时,可设置`ON/OFF`,默认值为`ON`
- `ANDROID_ABI=arm64-v8a`时,不需要设置。
其他配置参数:
@ -119,7 +119,7 @@ cmake -DCMAKE_SYSTEM_NAME=Android \
-DANDROID_STANDALONE_TOOLCHAIN=your/path/to/arm64_standalone_toolchain \
-DANDROID_ABI=arm64-v8a \
-DUSE_EIGEN_FOR_BLAS=OFF \
-DCMAKE_INSTALL_PREFIX=your/path/to/install \
-DCMAKE_INSTALL_PREFIX=your/path/to/install \
-DWITH_C_API=ON \
-DWITH_SWIG_PY=OFF \
..
@ -128,8 +128,8 @@ cmake -DCMAKE_SYSTEM_NAME=Android \
用户还可根据自己的需求设置其他编译参数。比如希望最小化生成的库的大小,可以设置`CMAKE_BUILD_TYPE`为`MinSizeRel`;若希望最快的执行速度,则可设置`CMAKE_BUILD_TYPE`为`Release`。亦可以通过手动设置`CMAKE_C/CXX_FLAGS_MINSIZEREL/RELEASE`来影响PaddlePaddle的编译过程。
**性能TIPS**为了达到最快的计算速度在CMake参数配置上有以下建议
- 设置`CMAKE_BUILD_TYPE`为`Release`
- 使用`clang`编译工具链
- 设置`CMAKE_BUILD_TYPE`为`Release`
- 使用`clang`编译工具链
- `armeabi-v7a`时,设置`USE_EIGEN_BLAS=ON`使用Eigen进行矩阵计算`arm64-v8a`时,设置`USE_EIGEN_FOR_BLAS=OFF`使用OpenBLAS进行矩阵计算
### 编译和安装

@ -300,4 +300,12 @@ extern void hl_matrix_col2Vol(real* dataDst,
real alpha,
real beta);
/**
* @brief Matrix col2Vol: Convert col matrix into 3D volume
* @param[out] out output int vector.
* @param[in] vec input float vector.
* @param[in] size size of the vector.
*/
extern void hl_vector_cast2int(int* out, real* vec, int size);
#endif /* HL_MATRIX_H_ */

@ -133,4 +133,6 @@ inline void hl_matrix_col2Vol(real* dataDst,
real alpha,
real beta) {}
inline void hl_vector_cast2int(int* out, real* vec, int size) {}
#endif // HL_MATRIX_STUB_H_

@ -793,3 +793,14 @@ void hl_matrix_col2Vol(real* dataDst,
CHECK_SYNC("hl_matrix_col2Vol failed");
}
__global__ void keVectorCast2Int(int* out, real* vec, int size) {
for (int i = threadIdx.x; i < (size); i += blockDim.x) {
out[i] = int(vec[i]);
}
}
void hl_vector_cast2int(int* out, real* vec, int size) {
keVectorCast2Int<<<1, 512, 0, STREAM_DEFAULT>>>(out, vec, size);
CHECK_SYNC("hl_vector_cast2int failed");
}

@ -20,7 +20,8 @@ cc_test(scope_test SRCS scope_test.cc DEPS scope)
cc_library(attribute SRCS attribute.cc DEPS framework_proto)
cc_test(program_desc_test SRCS program_desc_test.cc DEPS proto_desc)
cc_test(program_desc_test SRCS program_desc_test.cc DEPS proto_desc
device_context)
cc_library(op_proto_maker SRCS op_proto_maker.cc DEPS framework_proto attribute)
cc_test(op_proto_maker_test SRCS op_proto_maker_test.cc DEPS op_proto_maker)
cc_library(op_info SRCS op_info.cc DEPS attribute framework_proto)

@ -24,7 +24,6 @@
#include "paddle/framework/op_registry.h"
#include "paddle/operators/dynamic_recurrent_op.h"
#include "paddle/operators/net_op.h"
#include "paddle/operators/recurrent_op.h"
namespace paddle {
namespace framework {
@ -38,7 +37,7 @@ static inline std::unique_ptr<OperatorBase> CreateGradOp(
op_desc.SetType(op.Type());
op_desc.SetAttrMap(op.Attrs());
auto& info = OpInfoMap::Instance().Get(op.Type());
auto grad_descs = info.GradOpMaker()(op_desc, no_grad_set, grad_to_var);
auto grad_descs = info.GradOpMaker()(op_desc, no_grad_set, grad_to_var, {});
std::vector<std::unique_ptr<OperatorBase>> grad_ops;
grad_ops.reserve(grad_descs.size());
std::transform(grad_descs.begin(), grad_descs.end(),
@ -220,19 +219,7 @@ static std::unique_ptr<OperatorBase> BackwardRecursive(
});
// process recurrent gradient op as a special operator.
if (forwardOp.Type() == "recurrent") {
// NOTE clean up cycle call somewhere (RNN's stepnet constains itself),
// or this will result in infinite loop.
const auto& rnnop =
*static_cast<const operators::RecurrentOp*>(&forwardOp);
auto rnn_grad_op =
static_cast<operators::RecurrentGradientOp*>(grad_op.get());
const auto& stepnet_op =
*static_cast<const OperatorBase*>(&rnnop.stepnet());
// create stepnet's gradient op
rnn_grad_op->set_stepnet(
BackwardRecursive(stepnet_op, no_grad_names, grad_to_var, uniq_id));
} else if (forwardOp.Type() == "dynamic_recurrent") {
if (forwardOp.Type() == "dynamic_recurrent") {
// NOTE clean up cycle call somewhere (RNN's stepnet constains itself),
// or this will result in infinite loop.
const auto& rnnop =
@ -331,7 +318,7 @@ static void CreateGradVarInBlock(
continue;
}
auto pname = FwdName(arg);
auto* param = block_desc->FindVar(pname);
auto* param = block_desc->FindVarRecursive(pname);
auto* grad = block_desc->FindVar(arg);
if (param == nullptr) {
LOG(WARNING) << "Cannot find forward variable of " << arg
@ -348,7 +335,9 @@ static void CreateGradVarInBlock(
std::vector<std::unique_ptr<OpDescBind>> MakeOpGrad(
const OpDescBind* op_desc, std::unordered_set<std::string>* no_grad_vars,
std::unordered_map<std::string, std::string>* grad_to_var) {
std::unordered_map<std::string, std::string>* grad_to_var,
const std::vector<BlockDescBind*>& grad_block =
std::vector<BlockDescBind*>()) {
std::vector<std::unique_ptr<OpDescBind>> grad_op_descs;
// All input gradients of forwarding operator do not need to calculate.
const std::vector<std::string>& inputs = op_desc->InputArgumentNames();
@ -364,9 +353,10 @@ std::vector<std::unique_ptr<OpDescBind>> MakeOpGrad(
return grad_op_descs; // empty vector
}
grad_op_descs = OpInfoMap::Instance()
.Get(op_desc->Type())
.GradOpMaker()(*op_desc, *no_grad_vars, grad_to_var);
grad_op_descs =
OpInfoMap::Instance()
.Get(op_desc->Type())
.GradOpMaker()(*op_desc, *no_grad_vars, grad_to_var, grad_block);
std::list<std::unique_ptr<OpDescBind>> pending_fill_zeros_ops;
for (auto& desc : grad_op_descs) {
@ -400,21 +390,20 @@ std::vector<std::unique_ptr<OpDescBind>> MakeBlockBackward(
std::vector<std::unique_ptr<OpDescBind>> backward_descs;
for (auto it = op_descs.rbegin(); it != op_descs.rend(); ++it) {
std::vector<std::unique_ptr<OpDescBind>> op_grads =
MakeOpGrad(*it, no_grad_vars, grad_to_var);
std::vector<std::unique_ptr<OpDescBind>> op_grads;
if ((*it)->Type() == "recurrent") {
PADDLE_ENFORCE_EQ(
op_grads.size(), static_cast<size_t>(1),
"rnn_op's gradient process should contain only one op.");
int step_block_idx = (*it)->GetBlockAttr("step_block");
auto backward_block_op_descs = MakeBlockBackward(
program_desc, step_block_idx, no_grad_vars, grad_to_var);
BlockDescBind* backward_block = program_desc.AppendBlock(*cur_block);
BlockDescBind* backward_block =
program_desc.AppendBlock(*program_desc.MutableBlock(step_block_idx));
for (auto& ptr : backward_block_op_descs) {
backward_block->AppendAllocatedOp(std::move(ptr));
}
op_grads[0]->SetBlockAttr("step_block", *backward_block);
op_grads = MakeOpGrad(*it, no_grad_vars, grad_to_var, {backward_block});
} else {
op_grads = MakeOpGrad(*it, no_grad_vars, grad_to_var);
}
for (const auto& desc : op_grads) {

@ -88,6 +88,8 @@ class BlockDescBind {
BlockDesc *Proto();
ProgramDescBind *Program() { return this->prog_; }
private:
void ClearPBOps();
void ClearPBVars();

@ -108,8 +108,9 @@ struct OpInfoFiller<T, kGradOpDescMaker> {
info->grad_op_maker_ = [](
const OpDescBind& fwd_op,
const std::unordered_set<std::string>& no_grad_set,
std::unordered_map<std::string, std::string>* grad_to_var) {
T maker(fwd_op, no_grad_set, grad_to_var);
std::unordered_map<std::string, std::string>* grad_to_var,
const std::vector<BlockDescBind*>& grad_block) {
T maker(fwd_op, no_grad_set, grad_to_var, grad_block);
return maker();
};
}

@ -31,7 +31,7 @@ namespace framework {
const std::string kFeedOpType = "feed";
const std::string kFetchOpType = "fetch";
Executor::Executor(const std::vector<platform::Place>& places) {
Executor::Executor(const std::vector<platform::Place>& places) : own_(true) {
PADDLE_ENFORCE_GT(places.size(), 0);
device_contexts_.resize(places.size());
for (size_t i = 0; i < places.size(); i++) {
@ -52,8 +52,10 @@ Executor::Executor(const std::vector<platform::Place>& places) {
}
Executor::~Executor() {
for (auto& device_context : device_contexts_) {
delete device_context;
if (own_) {
for (auto& device_context : device_contexts_) {
delete device_context;
}
}
}
@ -66,44 +68,61 @@ static void CreateTensor(Variable* var, VarDesc::VarType var_type) {
var->GetMutable<FeedFetchList>();
} else if (var_type == VarDesc::FETCH_LIST) {
var->GetMutable<FeedFetchList>();
} else if (var_type == VarDesc::STEP_SCOPES) {
var->GetMutable<std::vector<framework::Scope>>();
} else {
PADDLE_THROW(
"Variable type must be "
"LoDTensor/SelectedRows/FEED_MINIBATCH/FETCH_LIST.");
"Variable type %d is not in "
"[LoDTensor, SelectedRows, FEED_MINIBATCH, FETCH_LIST]",
var_type);
}
}
void Executor::Run(const ProgramDescBind& pdesc, Scope* scope, int block_id) {
void Executor::Run(const ProgramDescBind& pdesc, Scope* scope, int block_id,
bool create_local_scope) {
// TODO(tonyyang-svail):
// - only runs on the first device (i.e. no interdevice communication)
// - will change to use multiple blocks for RNN op and Cond Op
PADDLE_ENFORCE_LT(block_id, pdesc.Size());
PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), pdesc.Size());
auto& block = pdesc.Block(block_id);
auto& device = device_contexts_[0];
Scope& local_scope = scope->NewScope();
for (auto& var : block.AllVars()) {
if (var->Persistable()) {
auto* ptr = scope->Var(var->Name());
CreateTensor(ptr, var->GetType());
VLOG(3) << "Create Variable " << var->Name()
<< " global, which pointer is " << ptr;
} else {
auto* ptr = local_scope.Var(var->Name());
Scope* local_scope = scope;
if (create_local_scope) {
local_scope = &scope->NewScope();
for (auto& var : block.AllVars()) {
if (var->Persistable()) {
auto* ptr = scope->Var(var->Name());
CreateTensor(ptr, var->GetType());
VLOG(3) << "Create Variable " << var->Name()
<< " global, which pointer is " << ptr;
} else {
auto* ptr = local_scope->Var(var->Name());
CreateTensor(ptr, var->GetType());
VLOG(3) << "Create Variable " << var->Name()
<< " locally, which pointer is " << ptr;
}
}
} else {
for (auto& var : block.AllVars()) {
auto* ptr = local_scope->Var(var->Name());
CreateTensor(ptr, var->GetType());
VLOG(3) << "Create Variable " << var->Name()
<< " locally, which pointer is " << ptr;
VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
<< ptr;
}
}
for (auto& op_desc : block.AllOps()) {
auto op = paddle::framework::OpRegistry::CreateOp(*op_desc);
op->Run(local_scope, *device);
op->Run(*local_scope, *device);
}
if (create_local_scope) {
scope->DeleteScope(local_scope);
}
scope->DeleteScope(&local_scope);
}
Executor::Executor(const platform::DeviceContext& device)
: device_contexts_({&device}), own_(false) {}
} // namespace framework
} // namespace paddle

@ -25,6 +25,7 @@ namespace framework {
class Executor {
public:
explicit Executor(const std::vector<platform::Place>& places);
explicit Executor(const platform::DeviceContext& devices);
~Executor();
/* @Brief
@ -34,10 +35,11 @@ class Executor {
* ProgramDesc
* Scope
*/
void Run(const ProgramDescBind&, Scope*, int);
void Run(const ProgramDescBind&, Scope*, int, bool create_local_scope = true);
private:
std::vector<platform::DeviceContext*> device_contexts_;
std::vector<const platform::DeviceContext*> device_contexts_;
bool own_;
};
} // namespace framework

@ -15,6 +15,7 @@
#pragma once
#include <string>
#include <unordered_set>
#include <vector>
#include "paddle/framework/op_desc.h"
#include "paddle/framework/operator.h"
@ -26,8 +27,13 @@ class GradOpDescMakerBase {
explicit GradOpDescMakerBase(
const OpDescBind& fwd_op,
const std::unordered_set<std::string>& no_grad_set,
std::unordered_map<std::string, std::string>* grad_to_var)
: fwd_op_(fwd_op), no_grad_set_(no_grad_set), grad_to_var_(grad_to_var) {}
std::unordered_map<std::string, std::string>* grad_to_var,
const std::vector<BlockDescBind*>& grad_block =
std::vector<BlockDescBind*>())
: fwd_op_(fwd_op),
no_grad_set_(no_grad_set),
grad_to_var_(grad_to_var),
grad_block_(grad_block) {}
virtual ~GradOpDescMakerBase() = default;
virtual std::vector<std::unique_ptr<OpDescBind>> operator()() const = 0;
@ -102,6 +108,9 @@ class GradOpDescMakerBase {
const OpDescBind& fwd_op_;
const std::unordered_set<std::string>& no_grad_set_;
std::unordered_map<std::string, std::string>* grad_to_var_;
protected:
std::vector<BlockDescBind*> grad_block_;
};
class SingleGradOpDescMaker : public GradOpDescMakerBase {

@ -327,6 +327,19 @@ void OpDescBind::InferShape(const BlockDescBind &block) const {
PADDLE_ENFORCE(static_cast<bool>(infer_shape),
"%s's infer_shape has not been registered", this->Type());
CompileTimeInferShapeContext ctx(*this, block);
if (VLOG_IS_ON(10)) {
std::ostringstream sout;
auto inames = this->InputArgumentNames();
sout << " From [";
std::copy(inames.begin(), inames.end(),
std::ostream_iterator<std::string>(sout, ", "));
sout << "] to [";
auto onames = this->OutputArgumentNames();
std::copy(onames.begin(), onames.end(),
std::ostream_iterator<std::string>(sout, ", "));
sout << "]";
VLOG(10) << sout.str();
}
infer_shape(&ctx);
}

@ -37,32 +37,32 @@ ExecutionContext::GetEigenDevice<platform::GPUPlace, Eigen::GpuDevice>() const {
std::string OperatorBase::Input(const std::string& name) const {
auto& ins = Inputs(name);
PADDLE_ENFORCE_LE(ins.size(), 1UL,
"Op %s input %s should contain only one variable", type_,
name);
"Operator %s's input %s should contain only one variable.",
type_, name);
return ins.empty() ? kEmptyVarName : ins[0];
}
const std::vector<std::string>& OperatorBase::Inputs(
const std::string& name) const {
auto it = inputs_.find(name);
PADDLE_ENFORCE(it != inputs_.end(), "Op %s do not have input %s", type_,
name);
PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
type_, name);
return it->second;
}
std::string OperatorBase::Output(const std::string& name) const {
auto& outs = Outputs(name);
PADDLE_ENFORCE_LE(outs.size(), 1UL,
"Op %s output %s should contain only one variable", type_,
name);
"Operator %s's output %s should contain only one variable.",
type_, name);
return outs.empty() ? kEmptyVarName : outs[0];
}
const std::vector<std::string>& OperatorBase::Outputs(
const std::string& name) const {
auto it = outputs_.find(name);
PADDLE_ENFORCE(it != outputs_.end(), "Op %s does not have output called %s",
type_, name);
PADDLE_ENFORCE(it != outputs_.end(),
"Operator %s does not have an output called %s.", type_, name);
return it->second;
}
@ -126,7 +126,7 @@ OperatorBase::OperatorBase(const std::string& type,
std::vector<std::string> OperatorBase::InputVars() const {
std::vector<std::string> ret_val;
for (auto& o : outputs_) {
for (auto& o : inputs_) {
ret_val.reserve(ret_val.size() + o.second.size());
ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
}
@ -394,7 +394,19 @@ class RuntimeInferShapeContext : public InferShapeContext {
void OperatorWithKernel::Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const {
VLOG(3) << "Running operator " << this->Type();
if (VLOG_IS_ON(1)) {
auto inputs = this->InputVars();
auto outputs = this->OutputVars(true);
std::ostringstream sout;
sout << "Run operator " << this->Type() << " From [";
std::ostream_iterator<std::string> out_it(sout, ",");
std::copy(inputs.begin(), inputs.end(), out_it);
sout << "] to [";
std::copy(outputs.begin(), outputs.end(), out_it);
sout << "]";
VLOG(1) << sout.str();
}
RuntimeInferShapeContext infer_shape_ctx(*this, scope);
this->InferShape(&infer_shape_ctx);

@ -427,7 +427,8 @@ class OperatorWithKernel : public OperatorBase {
int tmp = static_cast<int>(ToDataType(t->type()));
VLOG(3) << "Input " << ipt_name << " with data_type " << tmp;
PADDLE_ENFORCE(tmp == data_type || data_type == -1,
"DataType of Paddle Op %s must be same.", Type());
"DataType of Paddle Op %s must be the same.",
Type());
data_type = tmp;
}
}

@ -47,8 +47,12 @@ Variable* Scope::Var(const std::string& name) {
return v;
}
Variable* Scope::Var() {
return Var(string::Sprintf("%p.%d", this, vars_.size()));
Variable* Scope::Var(std::string* name) {
auto var_name = string::Sprintf("%p.%d", this, vars_.size());
if (name != nullptr) {
*name = var_name;
}
return Var(var_name);
}
Variable* Scope::FindVar(const std::string& name) const {

@ -49,7 +49,7 @@ class Scope {
Variable* Var(const std::string& name);
/// Create a variable with a scope-unique name.
Variable* Var();
Variable* Var(std::string* name = nullptr);
/// Find a variable in the scope or any of its ancestors. Returns
/// nullptr if cannot find.

@ -118,12 +118,14 @@ class Tensor {
const platform::DeviceContext& ctx);
/**
* @brief Return the slice of the tensor.
* @brief Return a sub-tensor of the given tensor.
*
* @param[in] begin_idx The begin index of the slice.
* @param[in] end_idx The end index of the slice.
* @param[in] begin_idx The index of the start row(inclusive) to slice.
* The index number begins from 0.
* @param[in] end_idx The index of the end row(exclusive) to slice.
* The index number begins from 0.
*/
inline Tensor Slice(const int& begin_idx, const int& end_idx) const;
inline Tensor Slice(int begin_idx, int end_idx) const;
platform::Place place() const {
PADDLE_ENFORCE_NOT_NULL(

@ -112,9 +112,10 @@ inline void* Tensor::mutable_data(platform::Place place, std::type_index type) {
if (holder_ != nullptr) {
holder_->set_type(type);
}
PADDLE_ENFORCE_GT(numel(), 0,
"Tensor's numel must be larger than zero to call "
"Tensor::mutable_data. Call Tensor::set_dim first.");
PADDLE_ENFORCE_GT(
numel(), 0,
"When calling this method, the Tensor's numel must be larger than zero. "
"Please check Tensor::Resize has been called first.");
int64_t size = numel() * SizeOfType(type);
/* some versions of boost::variant don't have operator!= */
if (holder_ == nullptr || !(holder_->place() == place) ||
@ -227,12 +228,14 @@ inline void Tensor::CopyFromVector(const std::vector<T>& src,
#endif
}
inline Tensor Tensor::Slice(const int& begin_idx, const int& end_idx) const {
inline Tensor Tensor::Slice(int begin_idx, int end_idx) const {
check_memory_size();
PADDLE_ENFORCE_GE(begin_idx, 0, "Slice begin index is less than zero.");
PADDLE_ENFORCE_LE(end_idx, dims_[0], "Slice end index is out of bound.");
PADDLE_ENFORCE_LT(begin_idx, end_idx,
"Begin index must be less than end index.");
PADDLE_ENFORCE_GE(begin_idx, 0,
"The start row index must be greater than 0.");
PADDLE_ENFORCE_LE(end_idx, dims_[0], "The end row index is out of bound.");
PADDLE_ENFORCE_LT(
begin_idx, end_idx,
"The start row index must be lesser than the end row index.");
if (dims_[0] == 1) {
return *this;

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save