Implementing the Adamax optimizer operator (#4538)
* Implementing the Adamax optimizer step operator * Adding unit tests for adamax_op * Changing learning rate and time step to inputs from attributes * Changing learning rate and time step to input(tensors) * Making the Adamax operator conform to naming convention * Removing Tensor<float> from comments * Rectifying the Adamax implementation * Changing Unit Test values and adding comments * Changing Unit Test to test multiple stepsrevert-4814-Add_sequence_project_op
parent
f30a1f42f0
commit
4cb5bd9021
@ -0,0 +1,139 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/adamax_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
class AdamaxOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(framework::InferShapeContextBase *ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("Param"),
|
||||
"Input(Param) of AdamaxOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("Grad"),
|
||||
"Input(Grad) of AdamaxOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("Moment"),
|
||||
"Input(Moment) of AdamaxOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("InfNorm"),
|
||||
"Input(InfNorm) of AdamaxOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("LearningRate"),
|
||||
"Input(LearningRate) of AdamaxOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("Beta1Pow"),
|
||||
"Input(Beta1Pow) of AdamaxOp should not be null.");
|
||||
|
||||
PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
|
||||
"Output(ParamOut) of AdamaxOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasOutput("MomentOut"),
|
||||
"Output(MomentOut) of AdamaxOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasOutput("InfNormOut"),
|
||||
"Output(InfNormOut) of AdamaxOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasOutput("Beta1PowOut"),
|
||||
"Output(Beta1PowOut) of AdamaxOp should not be null.");
|
||||
|
||||
auto lr_dims = ctx->GetInputDim("LearningRate");
|
||||
PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1,
|
||||
"Learning rate should have 1 dimension");
|
||||
auto beta1_pow_dims = ctx->GetInputDim("Beta1Pow");
|
||||
PADDLE_ENFORCE_EQ(framework::product(beta1_pow_dims), 1,
|
||||
"Beta1 power accumulator should have 1 dimension");
|
||||
auto param_dims = ctx->GetInputDim("Param");
|
||||
PADDLE_ENFORCE_EQ(
|
||||
param_dims, ctx->GetInputDim("Grad"),
|
||||
"Param and Grad input of AdamaxOp should have same dimension");
|
||||
PADDLE_ENFORCE_EQ(
|
||||
param_dims, ctx->GetInputDim("Moment"),
|
||||
"Param and Moment input of AdamaxOp should have same dimension");
|
||||
PADDLE_ENFORCE_EQ(
|
||||
param_dims, ctx->GetInputDim("InfNorm"),
|
||||
"Param and InfNorm input of AdamaxOp should have same dimension");
|
||||
|
||||
ctx->SetOutputDim("ParamOut", param_dims);
|
||||
ctx->SetOutputDim("MomentOut", param_dims);
|
||||
ctx->SetOutputDim("InfNormOut", param_dims);
|
||||
ctx->SetOutputDim("Beta1PowOut", beta1_pow_dims);
|
||||
}
|
||||
};
|
||||
|
||||
class AdamaxOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
AdamaxOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("Param", "(Tensor) Input parameter");
|
||||
AddInput("Grad", "(Tensor) Input gradient");
|
||||
AddInput("LearningRate", "(Tensor) Learning rate");
|
||||
AddInput("Moment", "(Tensor) First moment");
|
||||
AddInput("InfNorm",
|
||||
"(Tensor) "
|
||||
"Input exponentially weighted infinity norm");
|
||||
AddInput("Beta1Pow", "(Tensor) Input beta1 power accumulator");
|
||||
|
||||
AddOutput("ParamOut", "(Tensor) Output parameter");
|
||||
AddOutput("MomentOut", "(Tensor) Output first moment");
|
||||
AddOutput("InfNormOut",
|
||||
"(Tensor) "
|
||||
"Output exponentially weighted infinity norm");
|
||||
AddOutput("Beta1PowOut", "(Tensor) Output beta1 power accumulator");
|
||||
|
||||
AddAttr<float>("beta1",
|
||||
"(float, default 0.9) "
|
||||
"Exponential decay rate for the "
|
||||
"1st moment estimates.")
|
||||
.SetDefault(0.9f);
|
||||
AddAttr<float>("beta2",
|
||||
"(float, default 0.999) "
|
||||
"exponential decay rate for the weighted "
|
||||
"infinity norm estimates.")
|
||||
.SetDefault(0.999f);
|
||||
AddAttr<float>("epsilon",
|
||||
"(float, default 1.0e-8) "
|
||||
"Constant for numerical stability")
|
||||
.SetDefault(1.0e-8f);
|
||||
AddComment(R"DOC(
|
||||
Adamax Updates Operator.
|
||||
|
||||
This implements the Adamax optimizer from Section 7 of the Adam
|
||||
paper[1]. Adamax is a variant of the
|
||||
Adam algorithm based on the infinity norm.
|
||||
|
||||
Adamax updates:
|
||||
|
||||
moment_out = beta1 * moment + (1 - beta1) * grad
|
||||
inf_norm_out = max(beta2 * inf_norm + epsilon, abs(grad))
|
||||
beta1_pow_out = beta1_pow * beta1
|
||||
learning_rate_t = learning_rate/(1 - beta1_pow_out)
|
||||
param_out = param - learning_rate_t * moment_out/inf_norm_out
|
||||
|
||||
The original paper does not have an epsilon attribute.
|
||||
However, it is added here for numerical stability
|
||||
by preventing divide by 0.
|
||||
|
||||
References:
|
||||
[1] Adam: A Method for Stochastic Optimization
|
||||
(https://arxiv.org/abs/1412.6980)
|
||||
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_WITHOUT_GRADIENT(adamax, ops::AdamaxOp, ops::AdamaxOpMaker);
|
||||
REGISTER_OP_CPU_KERNEL(adamax,
|
||||
ops::AdamaxOpKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,20 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#define EIGEN_USE_GPU
|
||||
#include "paddle/operators/adamax_op.h"
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_GPU_KERNEL(adamax,
|
||||
ops::AdamaxOpKernel<paddle::platform::GPUPlace, float>);
|
@ -0,0 +1,72 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include "paddle/framework/eigen.h"
|
||||
#include "paddle/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename Place, typename T>
|
||||
class AdamaxOpKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto param_out_tensor = ctx.Output<framework::Tensor>("ParamOut");
|
||||
auto moment_out_tensor = ctx.Output<framework::Tensor>("MomentOut");
|
||||
auto inf_norm_out_tensor = ctx.Output<framework::Tensor>("InfNormOut");
|
||||
auto beta1_pow_out_tensor = ctx.Output<framework::Tensor>("Beta1PowOut");
|
||||
|
||||
param_out_tensor->mutable_data<T>(ctx.GetPlace());
|
||||
moment_out_tensor->mutable_data<T>(ctx.GetPlace());
|
||||
inf_norm_out_tensor->mutable_data<T>(ctx.GetPlace());
|
||||
beta1_pow_out_tensor->mutable_data<T>(ctx.GetPlace());
|
||||
|
||||
float beta1 = ctx.Attr<float>("beta1");
|
||||
float beta2 = ctx.Attr<float>("beta2");
|
||||
float epsilon = ctx.Attr<float>("epsilon");
|
||||
|
||||
auto param = framework::EigenVector<T>::Flatten(
|
||||
*ctx.Input<framework::Tensor>("Param"));
|
||||
auto grad = framework::EigenVector<T>::Flatten(
|
||||
*ctx.Input<framework::Tensor>("Grad"));
|
||||
auto moment = framework::EigenVector<T>::Flatten(
|
||||
*ctx.Input<framework::Tensor>("Moment"));
|
||||
auto inf_norm = framework::EigenVector<T>::Flatten(
|
||||
*ctx.Input<framework::Tensor>("InfNorm"));
|
||||
auto lr = framework::EigenVector<T>::Flatten(
|
||||
*ctx.Input<framework::Tensor>("LearningRate"));
|
||||
auto beta1_pow = framework::EigenVector<T>::Flatten(
|
||||
*ctx.Input<framework::Tensor>("Beta1Pow"));
|
||||
auto param_out = framework::EigenVector<T>::Flatten(*param_out_tensor);
|
||||
auto moment_out = framework::EigenVector<T>::Flatten(*moment_out_tensor);
|
||||
auto inf_norm_out =
|
||||
framework::EigenVector<T>::Flatten(*inf_norm_out_tensor);
|
||||
auto beta1_pow_out =
|
||||
framework::EigenVector<T>::Flatten(*beta1_pow_out_tensor);
|
||||
auto place = ctx.GetEigenDevice<Place>();
|
||||
|
||||
moment_out.device(place) = beta1 * moment + (1 - beta1) * grad;
|
||||
inf_norm_out.device(place) =
|
||||
grad.abs().cwiseMax((beta2 * inf_norm) + epsilon);
|
||||
beta1_pow_out.device(place) = beta1_pow * beta1;
|
||||
auto lr_t = lr / (1 - beta1_pow_out);
|
||||
Eigen::DSizes<int, 1> m_dsize(moment_out_tensor->numel());
|
||||
param_out.device(place) =
|
||||
param - lr_t.broadcast(m_dsize) * (moment_out / inf_norm_out);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,178 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
class TestAdamaxOp1(OpTest):
|
||||
def setUp(self):
|
||||
'''Test Adamax Operator with supplied attributes
|
||||
'''
|
||||
self.op_type = "adamax"
|
||||
param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
|
||||
grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
|
||||
moment = np.random.uniform(-1, 1, (102, 105)).astype("float32")
|
||||
# The infinity norm is positive
|
||||
inf_norm = np.random.random((102, 105)).astype("float32")
|
||||
|
||||
learning_rate = 0.002
|
||||
beta1 = 0.78
|
||||
beta2 = 0.899
|
||||
epsilon = 1e-5
|
||||
beta1_pow = beta1**10
|
||||
|
||||
self.inputs = {
|
||||
'Param': param,
|
||||
'Grad': grad,
|
||||
'Moment': moment,
|
||||
'InfNorm': inf_norm,
|
||||
'LearningRate': np.array([learning_rate]).astype("float32"),
|
||||
'Beta1Pow': np.array([beta1_pow]).astype("float32")
|
||||
}
|
||||
|
||||
self.attrs = {'beta1': beta1, 'beta2': beta2, 'epsilon': epsilon}
|
||||
|
||||
param_out, moment_out, inf_norm_out, beta1_pow_out = adamax_step(
|
||||
self.inputs, self.attrs)
|
||||
|
||||
self.outputs = {
|
||||
'ParamOut': param_out,
|
||||
'MomentOut': moment_out,
|
||||
'InfNormOut': inf_norm_out,
|
||||
'Beta1PowOut': beta1_pow_out
|
||||
}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
|
||||
class TestAdamaxOp2(OpTest):
|
||||
'''Test Adamax Operator with default attributes
|
||||
'''
|
||||
|
||||
def setUp(self):
|
||||
self.op_type = "adamax"
|
||||
param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
|
||||
grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
|
||||
moment = np.random.uniform(-1, 1, (102, 105)).astype("float32")
|
||||
# The infinity norm is positive
|
||||
inf_norm = np.random.random((102, 105)).astype("float32")
|
||||
|
||||
learning_rate = 0.002
|
||||
beta1 = 0.9
|
||||
beta2 = 0.999
|
||||
epsilon = 1e-8
|
||||
beta1_pow = beta1**8
|
||||
|
||||
self.inputs = {
|
||||
'Param': param,
|
||||
'Grad': grad,
|
||||
'Moment': moment,
|
||||
'InfNorm': inf_norm,
|
||||
'LearningRate': np.array([learning_rate]).astype("float32"),
|
||||
'Beta1Pow': np.array([beta1_pow]).astype("float32")
|
||||
}
|
||||
|
||||
attrs = {'beta1': beta1, 'beta2': beta2, 'epsilon': epsilon}
|
||||
param_out, moment_out, inf_norm_out, beta1_pow_out = adamax_step(
|
||||
self.inputs, attrs)
|
||||
|
||||
self.outputs = {
|
||||
'ParamOut': param_out,
|
||||
'MomentOut': moment_out,
|
||||
'InfNormOut': inf_norm_out,
|
||||
'Beta1PowOut': beta1_pow_out
|
||||
}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
|
||||
class TestAdamaxOpMultipleSteps(OpTest):
|
||||
def setUp(self):
|
||||
'''Test Adamax Operator with supplied attributes
|
||||
'''
|
||||
self.op_type = "adamax"
|
||||
self.num_steps = 10
|
||||
|
||||
param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
|
||||
grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
|
||||
moment = np.random.uniform(-1, 1, (102, 105)).astype("float32")
|
||||
# The infinity norm is positive
|
||||
inf_norm = np.random.random((102, 105)).astype("float32")
|
||||
|
||||
learning_rate = 0.002
|
||||
beta1 = 0.8
|
||||
beta2 = 0.99
|
||||
epsilon = 1e-5
|
||||
beta1_pow = 1
|
||||
|
||||
self.inputs = {
|
||||
'Param': param,
|
||||
'Grad': grad,
|
||||
'Moment': moment,
|
||||
'InfNorm': inf_norm,
|
||||
'LearningRate': np.array([learning_rate]).astype("float32"),
|
||||
'Beta1Pow': np.array([beta1_pow]).astype("float32")
|
||||
}
|
||||
|
||||
self.attrs = {'beta1': beta1, 'beta2': beta2, 'epsilon': epsilon}
|
||||
|
||||
param_out, moment_out, inf_norm_out, beta1_pow_out = adamax_step(
|
||||
self.inputs, self.attrs)
|
||||
|
||||
def test_check_output(self):
|
||||
for _ in range(self.num_steps):
|
||||
param_out, moment_out, inf_norm_out, beta1_pow_out = adamax_step(
|
||||
self.inputs, self.attrs)
|
||||
|
||||
self.outputs = {
|
||||
'ParamOut': param_out,
|
||||
'MomentOut': moment_out,
|
||||
'InfNormOut': inf_norm_out,
|
||||
'Beta1PowOut': beta1_pow_out
|
||||
}
|
||||
|
||||
# Verify output for this step
|
||||
self.check_output()
|
||||
|
||||
# Output of this step becomes input for next step
|
||||
self.inputs['Param'] = param_out
|
||||
self.inputs['Moment'] = moment_out
|
||||
self.inputs['InfNorm'] = inf_norm_out
|
||||
self.inputs['Beta1Pow'] = beta1_pow_out
|
||||
|
||||
# Randomize gradient for next step
|
||||
self.inputs['Grad'] = np.random.uniform(
|
||||
-1, 1, (102, 105)).astype("float32")
|
||||
|
||||
|
||||
def adamax_step(inputs, attributes):
|
||||
'''
|
||||
Simulate one step of the adamax optimizer
|
||||
:param inputs: dict of inputs
|
||||
:param attributes: dict of attributes
|
||||
:return tuple: tuple of output param, moment, inf_norm and
|
||||
beta1 power accumulator
|
||||
'''
|
||||
param = inputs['Param']
|
||||
grad = inputs['Grad']
|
||||
moment = inputs['Moment']
|
||||
inf_norm = inputs['InfNorm']
|
||||
lr = inputs['LearningRate']
|
||||
beta1_pow = inputs['Beta1Pow']
|
||||
|
||||
beta1 = attributes['beta1']
|
||||
beta2 = attributes['beta2']
|
||||
epsilon = attributes['epsilon']
|
||||
|
||||
moment_out = beta1 * moment + (1 - beta1) * grad
|
||||
inf_norm_out = np.maximum(beta2 * inf_norm + epsilon, np.abs(grad))
|
||||
beta1_pow_out = beta1_pow * beta1
|
||||
lr_t = (lr / (1 - beta1_pow_out))
|
||||
param_out = param - lr_t * np.divide(moment_out, inf_norm_out)
|
||||
|
||||
return param_out, moment_out, inf_norm_out, beta1_pow_out
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue