add detach API for Variable in dygraph mode, test=develop (#19477)
* add to and detach for Variable in dygraph, test=develop * add detach for Variable in dygraph, test=develop * add detach for Variable in dygraph, test=develop * add detach for Variable in dygraph, test=develop * add detach for Variable in dygraph, test=develop * add detach for Variable in dygraph, test=develop * add exception check, test=developsigmoid_bug
parent
e79cf3bce7
commit
4d26274d25
@ -0,0 +1,163 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import paddle.fluid as fluid
|
||||
|
||||
from paddle.fluid import FC
|
||||
from paddle.fluid.dygraph import FC
|
||||
from paddle.fluid.dygraph.base import to_variable
|
||||
|
||||
import unittest
|
||||
|
||||
|
||||
class Test_Detach(unittest.TestCase):
|
||||
def generate_Data(self):
|
||||
data = np.array(
|
||||
[[1, 8, 3, 9], [7, 20, 9, 6], [4, 6, 8, 10]]).astype('float32')
|
||||
return data
|
||||
|
||||
def no_detach_multi(self):
|
||||
data = self.generate_Data()
|
||||
with fluid.dygraph.guard():
|
||||
fc_w_param_attrs = fluid.ParamAttr(
|
||||
initializer=fluid.initializer.Constant(5.0))
|
||||
fc_b_param_attrs = fluid.ParamAttr(
|
||||
initializer=fluid.initializer.Constant(6.0))
|
||||
fc = FC("fc",
|
||||
10,
|
||||
num_flatten_dims=1,
|
||||
param_attr=fc_w_param_attrs,
|
||||
bias_attr=fc_b_param_attrs)
|
||||
fc1_w_param_attrs = fluid.ParamAttr(
|
||||
initializer=fluid.initializer.Constant(7.0))
|
||||
fc1_b_param_attrs = fluid.ParamAttr(
|
||||
initializer=fluid.initializer.Constant(8.0))
|
||||
fc1 = FC("fc",
|
||||
1,
|
||||
num_flatten_dims=1,
|
||||
param_attr=fc1_w_param_attrs,
|
||||
bias_attr=fc1_b_param_attrs)
|
||||
fc2_w_param_attrs = fluid.ParamAttr(
|
||||
initializer=fluid.initializer.Constant(9.0))
|
||||
fc2_b_param_attrs = fluid.ParamAttr(
|
||||
initializer=fluid.initializer.Constant(10.0))
|
||||
fc2 = FC("fc",
|
||||
1,
|
||||
num_flatten_dims=1,
|
||||
param_attr=fc2_w_param_attrs,
|
||||
bias_attr=fc2_b_param_attrs)
|
||||
data = to_variable(data)
|
||||
x = fc(data)
|
||||
x1 = fc1(x)
|
||||
x2 = fc2(x)
|
||||
loss = x1 + x2
|
||||
# print(loss, loss.shape)
|
||||
loss.backward()
|
||||
return x.gradient()
|
||||
|
||||
def no_detach_single(self):
|
||||
data = self.generate_Data()
|
||||
with fluid.dygraph.guard():
|
||||
fc_w_param_attrs = fluid.ParamAttr(
|
||||
initializer=fluid.initializer.Constant(5.0))
|
||||
fc_b_param_attrs = fluid.ParamAttr(
|
||||
initializer=fluid.initializer.Constant(6.0))
|
||||
fc = FC("fc",
|
||||
10,
|
||||
num_flatten_dims=1,
|
||||
param_attr=fc_w_param_attrs,
|
||||
bias_attr=fc_b_param_attrs)
|
||||
fc1_w_param_attrs = fluid.ParamAttr(
|
||||
initializer=fluid.initializer.Constant(7.0))
|
||||
fc1_b_param_attrs = fluid.ParamAttr(
|
||||
initializer=fluid.initializer.Constant(8.0))
|
||||
fc1 = FC("fc",
|
||||
1,
|
||||
num_flatten_dims=1,
|
||||
param_attr=fc1_w_param_attrs,
|
||||
bias_attr=fc1_b_param_attrs)
|
||||
data = to_variable(data)
|
||||
x = fc(data)
|
||||
x1 = fc1(x)
|
||||
loss = x1
|
||||
# print(loss, loss.shape)
|
||||
loss.backward()
|
||||
return x.gradient()
|
||||
|
||||
def detach_multi(self):
|
||||
data = self.generate_Data()
|
||||
with fluid.dygraph.guard():
|
||||
fc_w_param_attrs = fluid.ParamAttr(
|
||||
initializer=fluid.initializer.Constant(5.0))
|
||||
fc_b_param_attrs = fluid.ParamAttr(
|
||||
initializer=fluid.initializer.Constant(6.0))
|
||||
fc = FC("fc",
|
||||
10,
|
||||
num_flatten_dims=1,
|
||||
param_attr=fc_w_param_attrs,
|
||||
bias_attr=fc_b_param_attrs)
|
||||
fc1_w_param_attrs = fluid.ParamAttr(
|
||||
initializer=fluid.initializer.Constant(7.0))
|
||||
fc1_b_param_attrs = fluid.ParamAttr(
|
||||
initializer=fluid.initializer.Constant(8.0))
|
||||
fc1 = FC("fc",
|
||||
1,
|
||||
num_flatten_dims=1,
|
||||
param_attr=fc1_w_param_attrs,
|
||||
bias_attr=fc1_b_param_attrs)
|
||||
fc2_w_param_attrs = fluid.ParamAttr(
|
||||
initializer=fluid.initializer.Constant(9.0))
|
||||
fc2_b_param_attrs = fluid.ParamAttr(
|
||||
initializer=fluid.initializer.Constant(10.0))
|
||||
fc2 = FC("fc",
|
||||
1,
|
||||
num_flatten_dims=1,
|
||||
param_attr=fc2_w_param_attrs,
|
||||
bias_attr=fc2_b_param_attrs)
|
||||
data = to_variable(data)
|
||||
x = fc(data)
|
||||
x_detach = x.detach()
|
||||
x1 = fc1(x)
|
||||
x2 = fc2(x_detach)
|
||||
loss = x1 + x2
|
||||
# print(loss, loss.shape)
|
||||
loss.backward()
|
||||
return x.gradient()
|
||||
|
||||
def test_NoDetachMulti_DetachMulti(self):
|
||||
array_no_detach_multi = self.no_detach_multi()
|
||||
array_detach_multi = self.detach_multi()
|
||||
|
||||
assert not np.array_equal(array_no_detach_multi, array_detach_multi)
|
||||
|
||||
def test_NoDetachSingle_DetachMulti(self):
|
||||
array_no_detach_single = self.no_detach_single()
|
||||
array_detach_multi = self.detach_multi()
|
||||
assert np.array_equal(array_no_detach_single, array_detach_multi)
|
||||
|
||||
def test_detach_exception(self):
|
||||
x = fluid.layers.data(name="a", shape=[3, 4], dtype='float32')
|
||||
y = fluid.layers.fc(input=x, size=10, bias_attr=True)
|
||||
try:
|
||||
y_detach = y.detach()
|
||||
except Exception as e:
|
||||
assert type(e) == AttributeError
|
||||
assert str(e) == 'static graph model DO NOT supprt detach'
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue