Nlp dam (#14248)
* add dam test * update fuse_statis * use separated dam model. * Revert "use separated dam model." This reverts commit 13e775c86f909b164b7cc1d35a8a24b964ec622e. * test=develop * modify the cmake file about infer test, test=develop. * remove one comment, test=develop.fix_recordio_link
parent
ff9e531bd9
commit
4dbc01841d
@ -0,0 +1,224 @@
|
||||
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "paddle/fluid/inference/tests/api/tester_helper.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace inference {
|
||||
using contrib::AnalysisConfig;
|
||||
#define MAX_TURN_NUM 9
|
||||
#define MAX_TURN_LEN 50
|
||||
static std::vector<float> result_data;
|
||||
|
||||
struct DataRecord {
|
||||
std::vector<std::vector<int64_t>>
|
||||
turns[MAX_TURN_NUM]; // turns data : MAX_TURN_NUM
|
||||
std::vector<std::vector<float>>
|
||||
turns_mask[MAX_TURN_NUM]; // turns mask data : MAX_TURN_NUM
|
||||
std::vector<std::vector<int64_t>> response; // response data : 1
|
||||
std::vector<std::vector<float>> response_mask; // response mask data : 1
|
||||
size_t batch_iter{0};
|
||||
size_t batch_size{1};
|
||||
size_t num_samples; // total number of samples
|
||||
DataRecord() = default;
|
||||
explicit DataRecord(const std::string &path, int batch_size = 1)
|
||||
: batch_size(batch_size) {
|
||||
Load(path);
|
||||
}
|
||||
DataRecord NextBatch() {
|
||||
DataRecord data;
|
||||
size_t batch_end = batch_iter + batch_size;
|
||||
// NOTE skip the final batch, if no enough data is provided.
|
||||
if (batch_end <= response.size()) {
|
||||
for (int i = 0; i < MAX_TURN_NUM; ++i) {
|
||||
data.turns[i].assign(turns[i].begin() + batch_iter,
|
||||
turns[i].begin() + batch_end);
|
||||
}
|
||||
for (int i = 0; i < MAX_TURN_NUM; ++i) {
|
||||
data.turns_mask[i].assign(turns_mask[i].begin() + batch_iter,
|
||||
turns_mask[i].begin() + batch_end);
|
||||
}
|
||||
data.response.assign(response.begin() + batch_iter,
|
||||
response.begin() + batch_end);
|
||||
data.response_mask.assign(response_mask.begin() + batch_iter,
|
||||
response_mask.begin() + batch_end);
|
||||
CHECK(!data.response.empty());
|
||||
CHECK(!data.response_mask.empty());
|
||||
CHECK_EQ(data.response.size(), data.response_mask.size());
|
||||
}
|
||||
batch_iter += batch_size;
|
||||
return data;
|
||||
}
|
||||
void Load(const std::string &path) {
|
||||
std::ifstream file(path);
|
||||
std::string line;
|
||||
size_t num_lines = 0;
|
||||
result_data.clear();
|
||||
while (std::getline(file, line)) {
|
||||
num_lines++;
|
||||
std::vector<std::string> data;
|
||||
split(line, ',', &data);
|
||||
CHECK_EQ(data.size(), 2 * MAX_TURN_NUM + 3);
|
||||
// load turn data
|
||||
std::vector<int64_t> turns_tmp[MAX_TURN_NUM];
|
||||
for (int i = 0; i < MAX_TURN_NUM; ++i) {
|
||||
split_to_int64(data[i], ' ', &turns_tmp[i]);
|
||||
turns[i].push_back(std::move(turns_tmp[i]));
|
||||
}
|
||||
// load turn_mask data
|
||||
std::vector<float> turns_mask_tmp[MAX_TURN_NUM];
|
||||
for (int i = 0; i < MAX_TURN_NUM; ++i) {
|
||||
split_to_float(data[MAX_TURN_NUM + i], ' ', &turns_mask_tmp[i]);
|
||||
turns_mask[i].push_back(std::move(turns_mask_tmp[i]));
|
||||
}
|
||||
// load response data
|
||||
std::vector<int64_t> response_tmp;
|
||||
split_to_int64(data[2 * MAX_TURN_NUM], ' ', &response_tmp);
|
||||
response.push_back(std::move(response_tmp));
|
||||
// load response_mask data
|
||||
std::vector<float> response_mask_tmp;
|
||||
split_to_float(data[2 * MAX_TURN_NUM + 1], ' ', &response_mask_tmp);
|
||||
response_mask.push_back(std::move(response_mask_tmp));
|
||||
// load result data
|
||||
float result_tmp;
|
||||
result_tmp = std::stof(data[2 * MAX_TURN_NUM + 2]);
|
||||
result_data.push_back(result_tmp);
|
||||
}
|
||||
num_samples = num_lines;
|
||||
}
|
||||
};
|
||||
|
||||
void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
|
||||
int batch_size) {
|
||||
PaddleTensor turns_tensor[MAX_TURN_NUM];
|
||||
PaddleTensor turns_mask_tensor[MAX_TURN_NUM];
|
||||
PaddleTensor response_tensor;
|
||||
PaddleTensor response_mask_tensor;
|
||||
std::string turn_pre = "turn_";
|
||||
std::string turn_mask_pre = "turn_mask_";
|
||||
|
||||
auto one_batch = data->NextBatch();
|
||||
int size = one_batch.response[0].size();
|
||||
CHECK_EQ(size, MAX_TURN_LEN);
|
||||
// turn tensor assignment
|
||||
for (int i = 0; i < MAX_TURN_NUM; ++i) {
|
||||
turns_tensor[i].name = turn_pre + std::to_string(i);
|
||||
turns_tensor[i].shape.assign({batch_size, size, 1});
|
||||
turns_tensor[i].dtype = PaddleDType::INT64;
|
||||
TensorAssignData<int64_t>(&turns_tensor[i], one_batch.turns[i]);
|
||||
}
|
||||
// turn mask tensor assignment
|
||||
for (int i = 0; i < MAX_TURN_NUM; ++i) {
|
||||
turns_mask_tensor[i].name = turn_mask_pre + std::to_string(i);
|
||||
turns_mask_tensor[i].shape.assign({batch_size, size, 1});
|
||||
turns_mask_tensor[i].dtype = PaddleDType::FLOAT32;
|
||||
TensorAssignData<float>(&turns_mask_tensor[i], one_batch.turns_mask[i]);
|
||||
}
|
||||
// response tensor assignment
|
||||
response_tensor.name = "response";
|
||||
response_tensor.shape.assign({batch_size, size, 1});
|
||||
response_tensor.dtype = PaddleDType::INT64;
|
||||
TensorAssignData<int64_t>(&response_tensor, one_batch.response);
|
||||
// response mask tensor assignment
|
||||
response_mask_tensor.name = "response_mask";
|
||||
response_mask_tensor.shape.assign({batch_size, size, 1});
|
||||
response_mask_tensor.dtype = PaddleDType::FLOAT32;
|
||||
TensorAssignData<float>(&response_mask_tensor, one_batch.response_mask);
|
||||
|
||||
// Set inputs.
|
||||
for (int i = 0; i < MAX_TURN_NUM; ++i) {
|
||||
input_slots->push_back(std::move(turns_tensor[i]));
|
||||
}
|
||||
for (int i = 0; i < MAX_TURN_NUM; ++i) {
|
||||
input_slots->push_back(std::move(turns_mask_tensor[i]));
|
||||
}
|
||||
input_slots->push_back(std::move(response_tensor));
|
||||
input_slots->push_back(std::move(response_mask_tensor));
|
||||
}
|
||||
|
||||
void SetConfig(contrib::AnalysisConfig *cfg) {
|
||||
cfg->prog_file = FLAGS_infer_model + "/__model__";
|
||||
cfg->param_file = FLAGS_infer_model + "/param";
|
||||
cfg->use_gpu = false;
|
||||
cfg->device = 0;
|
||||
cfg->specify_input_name = true;
|
||||
cfg->enable_ir_optim = true;
|
||||
}
|
||||
|
||||
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
|
||||
DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
|
||||
std::vector<PaddleTensor> input_slots;
|
||||
int test_batch_num =
|
||||
FLAGS_test_all_data ? data.num_samples / FLAGS_batch_size : 1;
|
||||
LOG(INFO) << "The number of samples to be test: "
|
||||
<< test_batch_num * FLAGS_batch_size;
|
||||
for (int bid = 0; bid < test_batch_num; ++bid) {
|
||||
input_slots.clear();
|
||||
PrepareInputs(&input_slots, &data, FLAGS_batch_size);
|
||||
(*inputs).emplace_back(input_slots);
|
||||
}
|
||||
}
|
||||
|
||||
// Easy for profiling independently.
|
||||
TEST(Analyzer_dam, profile) {
|
||||
contrib::AnalysisConfig cfg;
|
||||
SetConfig(&cfg);
|
||||
|
||||
std::vector<PaddleTensor> outputs;
|
||||
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
||||
SetInput(&input_slots_all);
|
||||
TestPrediction(cfg, input_slots_all, &outputs, FLAGS_num_threads);
|
||||
|
||||
if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
|
||||
PADDLE_ENFORCE_GT(outputs.size(), 0);
|
||||
size_t size = GetSize(outputs[0]);
|
||||
PADDLE_ENFORCE_GT(size, 0);
|
||||
float *result = static_cast<float *>(outputs[0].data.data());
|
||||
for (size_t i = 0; i < size; i++) {
|
||||
EXPECT_NEAR(result[i], result_data[i], 1e-3);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Check the fuse status
|
||||
TEST(Analyzer_dam, fuse_statis) {
|
||||
contrib::AnalysisConfig cfg;
|
||||
SetConfig(&cfg);
|
||||
|
||||
if (FLAGS_use_analysis) {
|
||||
int num_ops;
|
||||
auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
|
||||
auto fuse_statis = GetFuseStatis(
|
||||
static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
|
||||
ASSERT_TRUE(fuse_statis.count("fc_fuse"));
|
||||
EXPECT_EQ(fuse_statis.at("fc_fuse"), 317);
|
||||
EXPECT_EQ(num_ops, 2020);
|
||||
}
|
||||
}
|
||||
|
||||
// Compare result of NativeConfig and AnalysisConfig
|
||||
TEST(Analyzer_dam, compare) {
|
||||
contrib::AnalysisConfig cfg;
|
||||
SetConfig(&cfg);
|
||||
|
||||
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
||||
SetInput(&input_slots_all);
|
||||
|
||||
if (FLAGS_use_analysis) {
|
||||
CompareNativeAndAnalysis(cfg, input_slots_all);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace inference
|
||||
} // namespace paddle
|
Loading…
Reference in new issue