|
|
|
@ -23,19 +23,15 @@ class SmoothL1LossOp : public framework::OperatorWithKernel {
|
|
|
|
|
|
|
|
|
|
protected:
|
|
|
|
|
void InferShape(const framework::InferShapeContext& ctx) const override {
|
|
|
|
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
|
|
|
|
|
"Input of SmoothL1LossOp must be initialized.");
|
|
|
|
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"),
|
|
|
|
|
"Target of SmoothL1LossOp must be initialized.");
|
|
|
|
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "X must be initialized.");
|
|
|
|
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Y must be initialized.");
|
|
|
|
|
|
|
|
|
|
auto* x = ctx.Input<framework::Tensor>("X");
|
|
|
|
|
auto* y = ctx.Input<framework::Tensor>("Y");
|
|
|
|
|
PADDLE_ENFORCE_EQ(x->dims(), y->dims(),
|
|
|
|
|
"Dimensions of SmoothL1LossOp's input and target "
|
|
|
|
|
"must be same.");
|
|
|
|
|
"The shape of X and Y must be the same.");
|
|
|
|
|
PADDLE_ENFORCE_GE(x->dims().size(), 2,
|
|
|
|
|
"Tensor rank of SmoothL1LossOp's input must be "
|
|
|
|
|
"at least 2.");
|
|
|
|
|
"The tensor rank of X must be at least 2.");
|
|
|
|
|
auto* inside_weight = ctx.Input<framework::Tensor>("InsideWeight");
|
|
|
|
|
if (inside_weight) {
|
|
|
|
|
auto* outside_weight = ctx.Input<framework::Tensor>("OutsideWeight");
|
|
|
|
@ -43,10 +39,9 @@ class SmoothL1LossOp : public framework::OperatorWithKernel {
|
|
|
|
|
"If weights are provided, must specify both "
|
|
|
|
|
"inside and outside weights.");
|
|
|
|
|
PADDLE_ENFORCE_EQ(inside_weight->dims(), x->dims(),
|
|
|
|
|
"Dimensions of inside weight must be same with input.");
|
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
|
|
|
outside_weight->dims(), x->dims(),
|
|
|
|
|
"Dimensions of outside weight must be same with input.");
|
|
|
|
|
"The shape of InsideWeight must be same as X.");
|
|
|
|
|
PADDLE_ENFORCE_EQ(outside_weight->dims(), x->dims(),
|
|
|
|
|
"The shape of OutsideWeight must be same as X.");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
auto* diff = ctx.Output<framework::LoDTensor>("Diff");
|
|
|
|
@ -63,21 +58,37 @@ class SmoothL1LossOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
|
|
|
SmoothL1LossOpMaker(framework::OpProto* proto,
|
|
|
|
|
framework::OpAttrChecker* op_checker)
|
|
|
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
|
|
|
AddInput("X", "Input of SmoothL1LossOp.");
|
|
|
|
|
AddInput("Y", "Target of SmoothL1LossOp.");
|
|
|
|
|
AddInput("InsideWeight", "Optional input to scale (X-Y).");
|
|
|
|
|
AddInput("OutsideWeight", "Optinal input to scale smooth l1 loss.");
|
|
|
|
|
AddOutput("Diff", "Intermediate variable to cache Win*(X-Y).")
|
|
|
|
|
AddInput("X",
|
|
|
|
|
"The input tensor of smooth l1 loss op."
|
|
|
|
|
"The rank should be greater or equal to 2 with shape "
|
|
|
|
|
"[batch_size, value_dim1, value_dim2, ..., value_dimN]");
|
|
|
|
|
AddInput("Y",
|
|
|
|
|
"The target tensor of smooth l1 loss op "
|
|
|
|
|
"with the same shape as X.");
|
|
|
|
|
AddInput("InsideWeight",
|
|
|
|
|
"Optional input tensor of smooth l1 loss op with the same shape "
|
|
|
|
|
"as X. If provided, the result of (X - Y) will be multiplied "
|
|
|
|
|
"by this tensor element by element.");
|
|
|
|
|
AddInput("OutsideWeight",
|
|
|
|
|
"Optinal input of smooth l1 loss op with the same shape as X."
|
|
|
|
|
"If provided, the output smooth l1 loss will be multiplied by "
|
|
|
|
|
"this tensor element by element.");
|
|
|
|
|
AddOutput("Diff", "Intermediate variable to cache InsideWeight*(X-Y).")
|
|
|
|
|
.AsIntermediate();
|
|
|
|
|
AddOutput("Out", "Final smooth l1 loss of inputs.");
|
|
|
|
|
AddAttr<AttrType>("sigma", "Hyper parameter, default value is 3.0 .")
|
|
|
|
|
AddOutput("Out", "Smooth l1 loss.");
|
|
|
|
|
AddAttr<AttrType>("sigma",
|
|
|
|
|
"Hyper parameter of smooth l1 loss op."
|
|
|
|
|
"A float scalar with default value 3.0.")
|
|
|
|
|
.SetDefault(3.0);
|
|
|
|
|
AddComment(R"DOC(
|
|
|
|
|
Compute SmoothL1Loss for input and target.
|
|
|
|
|
Compute smooth l1 loss for input and target. The operator take the 1st
|
|
|
|
|
dimension of input as batch size. For each instance, it will compute
|
|
|
|
|
smooth l1 loss element by element first and sum all losses to one value.
|
|
|
|
|
So the output shape is [batch_size, 1].
|
|
|
|
|
|
|
|
|
|
The equation is:
|
|
|
|
|
loss = 0.5 * (sigma * (x - y)) ^ 2 if abs(x - y) < 1 / sigma^2
|
|
|
|
|
abs(x - y) - 0.5 / sigma^2 otherwise
|
|
|
|
|
loss = 0.5 * (sigma * (x-y))^2 if abs(x - y) < 1 / sigma^2
|
|
|
|
|
abs(x - y) - 0.5 / sigma^2 otherwise
|
|
|
|
|
|
|
|
|
|
)DOC");
|
|
|
|
|
}
|
|
|
|
@ -98,12 +109,12 @@ class SmoothL1LossGradOp : public framework::OperatorWithKernel {
|
|
|
|
|
ctx.Output<framework::LoDTensor>(framework::GradVarName("Y"));
|
|
|
|
|
|
|
|
|
|
PADDLE_ENFORCE_GE(out_dims.size(), 2,
|
|
|
|
|
"Tensor rank of output gradient should be 2.");
|
|
|
|
|
"The tensor rank of Input(Out@Grad) should be 2.");
|
|
|
|
|
PADDLE_ENFORCE_EQ(out_dims[0], in_dims[0],
|
|
|
|
|
"First dimension of ouptut gradient must be "
|
|
|
|
|
"same with input.");
|
|
|
|
|
"The 1st dimension of Input(Out@Grad) must be "
|
|
|
|
|
"same as input.");
|
|
|
|
|
PADDLE_ENFORCE_EQ(out_dims[1], 1,
|
|
|
|
|
"Second dimension of output gradient must be 1.");
|
|
|
|
|
"The 2nd dimension of Input(Out@Grad) must be 1.");
|
|
|
|
|
|
|
|
|
|
if (x_grad) x_grad->Resize(in_dims);
|
|
|
|
|
if (y_grad) y_grad->Resize(in_dims);
|
|
|
|
|