add fluid.device_guard to specify the device type for Op (#22254)
* add fluid.device_guard to specify the device type for Oprevert-22710-feature/integrated_ps_api
parent
063c51c748
commit
4e8bc02461
@ -0,0 +1,149 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
from op_test import OpTest
|
||||
|
||||
import numpy as np
|
||||
import paddle.fluid as fluid
|
||||
import paddle.fluid.core as core
|
||||
import warnings
|
||||
|
||||
|
||||
def execute(main_program, startup_program):
|
||||
if core.is_compiled_with_cuda():
|
||||
place = core.CUDAPlace(0)
|
||||
else:
|
||||
place = core.CPUPlace()
|
||||
exe = fluid.Executor(place)
|
||||
exe.run(startup_program)
|
||||
exe.run(main_program)
|
||||
|
||||
|
||||
class TestDeviceGuard(unittest.TestCase):
|
||||
def test_device_guard(self):
|
||||
main_program = fluid.Program()
|
||||
startup_program = fluid.Program()
|
||||
with fluid.program_guard(main_program, startup_program):
|
||||
data1 = fluid.layers.fill_constant(
|
||||
shape=[1, 3, 8, 8], value=0.5, dtype='float32')
|
||||
data2 = fluid.layers.fill_constant(
|
||||
shape=[1, 3, 5, 5], value=0.5, dtype='float32')
|
||||
shape = fluid.layers.shape(data2)
|
||||
with fluid.device_guard("cpu"):
|
||||
shape = fluid.layers.slice(
|
||||
shape, axes=[0], starts=[0], ends=[4])
|
||||
with fluid.device_guard("gpu"):
|
||||
out = fluid.layers.crop_tensor(data1, shape=shape)
|
||||
# check if the device attr is set correctly
|
||||
all_ops = main_program.global_block().ops
|
||||
device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
|
||||
for op in all_ops:
|
||||
if op.type == 'slice':
|
||||
self.assertEqual(op.desc.attr(device_attr_name), "cpu")
|
||||
if op.type == 'crop_tensor':
|
||||
self.assertEqual(op.desc.attr(device_attr_name), "gpu")
|
||||
|
||||
execute(main_program, startup_program)
|
||||
|
||||
def test_cpu_only_op(self):
|
||||
main_program = fluid.Program()
|
||||
startup_program = fluid.Program()
|
||||
with fluid.program_guard(main_program, startup_program):
|
||||
x = fluid.layers.fill_constant(
|
||||
shape=[2, 255, 13, 13], value=0.3, dtype='float32')
|
||||
gt_box = fluid.layers.fill_constant(
|
||||
shape=[2, 6, 4], value=0.5, dtype='float32')
|
||||
gt_label = fluid.layers.fill_constant(
|
||||
shape=[2, 6], value=1.0, dtype='int32')
|
||||
gt_score = fluid.layers.fill_constant(
|
||||
shape=[2, 6], value=0.5, dtype='float32')
|
||||
anchors = [
|
||||
10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156,
|
||||
198, 373, 326
|
||||
]
|
||||
anchor_mask = [0, 1, 2]
|
||||
with fluid.device_guard("gpu"):
|
||||
# yolov3_loss only has cpu kernel, so its cpu kernel will be executed
|
||||
loss = fluid.layers.yolov3_loss(
|
||||
x=x,
|
||||
gt_box=gt_box,
|
||||
gt_label=gt_label,
|
||||
gt_score=gt_score,
|
||||
anchors=anchors,
|
||||
anchor_mask=anchor_mask,
|
||||
class_num=80,
|
||||
ignore_thresh=0.7,
|
||||
downsample_ratio=32)
|
||||
|
||||
execute(main_program, startup_program)
|
||||
|
||||
def test_without_kernel_op(self):
|
||||
main_program = fluid.Program()
|
||||
startup_program = fluid.Program()
|
||||
with fluid.program_guard(main_program, startup_program):
|
||||
i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
|
||||
loop_len = fluid.layers.fill_constant(
|
||||
shape=[1], dtype='int64', value=10)
|
||||
cond = fluid.layers.less_than(x=i, y=loop_len)
|
||||
|
||||
with warnings.catch_warnings(record=True) as w:
|
||||
warnings.simplefilter("always")
|
||||
with fluid.device_guard("cpu"):
|
||||
while_op = fluid.layers.While(cond=cond)
|
||||
with while_op.block():
|
||||
i = fluid.layers.increment(x=i, value=1, in_place=True)
|
||||
fluid.layers.less_than(x=i, y=loop_len, cond=cond)
|
||||
|
||||
assert len(w) == 1
|
||||
all_ops = main_program.global_block().ops
|
||||
device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
|
||||
for op in all_ops:
|
||||
if op.type == 'while':
|
||||
self.assertEqual(op.desc.attr(device_attr_name), "")
|
||||
|
||||
execute(main_program, startup_program)
|
||||
|
||||
def test_error(self):
|
||||
def device_attr():
|
||||
with fluid.device_guard("cpu1"):
|
||||
out = fluid.layers.fill_constant(
|
||||
shape=[1], value=0.2, dtype='float32')
|
||||
|
||||
self.assertRaises(ValueError, device_attr)
|
||||
|
||||
def test_warning(self):
|
||||
main_program = fluid.Program()
|
||||
startup_program = fluid.Program()
|
||||
with fluid.program_guard(main_program, startup_program):
|
||||
with warnings.catch_warnings(record=True) as w:
|
||||
warnings.simplefilter("always")
|
||||
with fluid.device_guard("gpu"):
|
||||
x = fluid.layers.fill_constant(
|
||||
shape=[1], value=3.0, dtype='float32', force_cpu=True)
|
||||
y = fluid.layers.fill_constant(
|
||||
shape=[1], value=4.0, dtype='float32')
|
||||
result = fluid.layers.less_than(x=x, y=y, force_cpu=False)
|
||||
|
||||
assert len(w) == 2
|
||||
all_ops = main_program.global_block().ops
|
||||
device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
|
||||
for op in all_ops:
|
||||
self.assertEqual(op.desc.attr(device_attr_name), "gpu")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue