|
|
|
@ -15,6 +15,7 @@
|
|
|
|
|
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
|
|
|
|
|
#include <algorithm>
|
|
|
|
|
#include <fstream>
|
|
|
|
|
#include <functional>
|
|
|
|
|
#include <limits>
|
|
|
|
|
#include <map>
|
|
|
|
|
#include <string>
|
|
|
|
@ -38,6 +39,14 @@ using framework::ir::Node;
|
|
|
|
|
using framework::ir::TopologyVarientSort;
|
|
|
|
|
using space_table_t = MemoryOptimizePass::space_table_t;
|
|
|
|
|
|
|
|
|
|
typedef struct {
|
|
|
|
|
std::string name;
|
|
|
|
|
size_t size;
|
|
|
|
|
int cluster;
|
|
|
|
|
std::pair<int, int> lifetime;
|
|
|
|
|
std::unordered_set<std::string> adj;
|
|
|
|
|
} MemNode;
|
|
|
|
|
|
|
|
|
|
// Collect the lifecycles of the tensors.
|
|
|
|
|
// Traverse the graph in topological order.
|
|
|
|
|
// The traversal order also affect the lifecycles, so different sort_kind is
|
|
|
|
@ -96,6 +105,89 @@ int DataTypeToSpace(framework::proto::VarType_Type type) {
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void MemoryOptimizePass::CollectVarMemorySize(
|
|
|
|
|
space_table_t* space_table) const {
|
|
|
|
|
const int fake_batch_size = 1;
|
|
|
|
|
// Collect tensors from graph.
|
|
|
|
|
for (auto* node : graph_->Nodes()) {
|
|
|
|
|
if (node->IsVar() &&
|
|
|
|
|
node->Var()->GetType() ==
|
|
|
|
|
framework::proto::VarType::Type::VarType_Type_LOD_TENSOR) {
|
|
|
|
|
// Parameters will not be reused.
|
|
|
|
|
if (node->Var()->Persistable()) continue;
|
|
|
|
|
auto shape = node->Var()->GetShape();
|
|
|
|
|
for (auto& v : shape) {
|
|
|
|
|
if (v < 0) v = fake_batch_size;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int size = std::accumulate(shape.begin(), shape.end(), 1,
|
|
|
|
|
std::multiplies<int>());
|
|
|
|
|
(*space_table)[node->Var()->Name()] =
|
|
|
|
|
size * DataTypeToSpace(node->Var()->GetDataType());
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void MakeSimpleReusePlan(
|
|
|
|
|
const std::unordered_map<std::string, std::pair<int, int>>& lifecycles,
|
|
|
|
|
const std::unordered_map<std::string, size_t>& space_table,
|
|
|
|
|
std::unordered_map<std::string, std::string>* node2cluster,
|
|
|
|
|
std::unordered_map<std::string, int>* cluster_size) {
|
|
|
|
|
std::vector<MemNode> mem_nodes;
|
|
|
|
|
for (auto& data : lifecycles) {
|
|
|
|
|
MemNode temp_node;
|
|
|
|
|
temp_node.name = data.first;
|
|
|
|
|
PADDLE_ENFORCE(
|
|
|
|
|
space_table.count(data.first),
|
|
|
|
|
"%s variable should be in the spacetable during memory optimize",
|
|
|
|
|
data.first);
|
|
|
|
|
temp_node.size = space_table.at(data.first);
|
|
|
|
|
temp_node.cluster = -1;
|
|
|
|
|
temp_node.lifetime = data.second;
|
|
|
|
|
mem_nodes.push_back(temp_node);
|
|
|
|
|
}
|
|
|
|
|
auto overlap = [](std::pair<int, int> a, std::pair<int, int> b) -> bool {
|
|
|
|
|
return b.second >= a.first && a.second >= b.first;
|
|
|
|
|
};
|
|
|
|
|
// If the lifetime of two nodes is overwritten, we set them as adjacent nodes.
|
|
|
|
|
for (size_t i = 0; i < mem_nodes.size(); i++) {
|
|
|
|
|
for (size_t j = i + 1; j < mem_nodes.size(); j++) {
|
|
|
|
|
if (overlap(mem_nodes[i].lifetime, mem_nodes[j].lifetime)) {
|
|
|
|
|
mem_nodes[i].adj.insert(mem_nodes[j].name);
|
|
|
|
|
mem_nodes[j].adj.insert(mem_nodes[i].name);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Sort the nodes according to the node memory size.
|
|
|
|
|
auto sort_func = [](MemNode a, MemNode b) { return a.size > b.size; };
|
|
|
|
|
std::sort(mem_nodes.begin(), mem_nodes.end(), sort_func);
|
|
|
|
|
|
|
|
|
|
// Generating Memory Reuse Strategy Based on Greedy Way
|
|
|
|
|
for (size_t i = 0; i < mem_nodes.size(); i++) {
|
|
|
|
|
if (mem_nodes[i].cluster >= 0) continue;
|
|
|
|
|
int cluster_index = cluster_size->size();
|
|
|
|
|
mem_nodes[i].cluster = cluster_index;
|
|
|
|
|
(*cluster_size)[mem_nodes[i].name] = mem_nodes[i].size;
|
|
|
|
|
(*node2cluster)[mem_nodes[i].name] = mem_nodes[i].name;
|
|
|
|
|
std::unordered_set<std::string> cluster_adj = mem_nodes[i].adj;
|
|
|
|
|
for (size_t j = i + 1; j < mem_nodes.size(); j++) {
|
|
|
|
|
if (mem_nodes[j].cluster < 0 &&
|
|
|
|
|
(cluster_adj.find(mem_nodes[j].name) == cluster_adj.end())) {
|
|
|
|
|
(*node2cluster)[mem_nodes[j].name] = mem_nodes[i].name;
|
|
|
|
|
mem_nodes[j].cluster = cluster_index;
|
|
|
|
|
for (auto& n : mem_nodes[j].adj) {
|
|
|
|
|
cluster_adj.insert(n);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
for (auto& cluster : *cluster_size) {
|
|
|
|
|
LOG(INFO) << "Cluster name : " << cluster.first
|
|
|
|
|
<< " size: " << cluster.second;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Collect the memory size of the tensors.
|
|
|
|
|
void MemoryOptimizePass::CollectVarMemorySize(
|
|
|
|
|
const std::unordered_map<std::string, size_t>& batch_var_ave_dim,
|
|
|
|
@ -377,6 +469,17 @@ void UpdateOpDescsByReuse(
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// modify the graph
|
|
|
|
|
for (auto input_node : node->inputs) {
|
|
|
|
|
PADDLE_ENFORCE(input_node->IsVar());
|
|
|
|
|
std::string input_node_name = input_node->Name();
|
|
|
|
|
if (reuse_table.count(input_node_name) &&
|
|
|
|
|
reuse_table.at(input_node_name) != input_node_name) {
|
|
|
|
|
auto name = reuse_table.at(input_node_name);
|
|
|
|
|
input_node->RenameVar(name);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (auto argument : node->Op()->Outputs()) {
|
|
|
|
|
for (const auto& x : argument.second) {
|
|
|
|
|
auto name = x;
|
|
|
|
@ -388,6 +491,17 @@ void UpdateOpDescsByReuse(
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// modify the graph
|
|
|
|
|
for (auto out_node : node->outputs) {
|
|
|
|
|
PADDLE_ENFORCE(out_node->IsVar());
|
|
|
|
|
std::string out_node_name = out_node->Name();
|
|
|
|
|
if (reuse_table.count(out_node_name) &&
|
|
|
|
|
reuse_table.at(out_node_name) != out_node_name) {
|
|
|
|
|
auto name = reuse_table.at(out_node_name);
|
|
|
|
|
out_node->RenameVar(name);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Update arguments.
|
|
|
|
|
for (auto& arg : in_args) {
|
|
|
|
|
node->Op()->SetInput(arg.first, arg.second);
|
|
|
|
@ -589,12 +703,24 @@ void MemoryOptimizePass::RunImpl(Argument* argument) {
|
|
|
|
|
VLOG(3) << "Load memory cache from " << path;
|
|
|
|
|
std::vector<std::map<std::string, std::vector<int>>> batches;
|
|
|
|
|
|
|
|
|
|
if (argument->static_memory_optim() && inference::IsFileExists(path)) {
|
|
|
|
|
if (!(argument->static_memory_optim() && inference::IsFileExists(path))) {
|
|
|
|
|
string::PrettyLogInfo("--- Performing dynamic memory optimize");
|
|
|
|
|
// batches = FakeBatchVarShapes(argument->main_program());
|
|
|
|
|
int sort_kind = 0;
|
|
|
|
|
std::unordered_map<std::string, lifecycle_t> lifecycles;
|
|
|
|
|
space_table_t space_table;
|
|
|
|
|
std::unordered_map<std::string, std::string> node2cluster;
|
|
|
|
|
std::unordered_map<std::string, int> cluster_size;
|
|
|
|
|
|
|
|
|
|
CollectLifeCycle(&lifecycles, sort_kind);
|
|
|
|
|
CollectVarMemorySize(&space_table);
|
|
|
|
|
MakeSimpleReusePlan(lifecycles, space_table, &node2cluster, &cluster_size);
|
|
|
|
|
UpdateOpDescsByReuse(graph_, node2cluster, sort_kind);
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
} else {
|
|
|
|
|
string::PrettyLogInfo("--- Performing static memory optimize");
|
|
|
|
|
batches = DeseralizeBatchVarShapes(path);
|
|
|
|
|
} else {
|
|
|
|
|
string::PrettyLogInfo("--- Performing dynamic memory optimize");
|
|
|
|
|
batches = FakeBatchVarShapes(argument->main_program());
|
|
|
|
|
}
|
|
|
|
|
auto var_batch_ave_size = GetBatchAverageSize(batches);
|
|
|
|
|
|
|
|
|
|