commit
4eaa789730
After Width: | Height: | Size: 99 KiB |
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,101 @@
|
||||
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "paddle/fluid/operators/detail/safe_ref.h"
|
||||
#include "paddle/fluid/operators/reader/reader_op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
namespace reader {
|
||||
|
||||
class MultiPassReader : public framework::DecoratedReader {
|
||||
public:
|
||||
MultiPassReader(ReaderBase* reader, int pass_num)
|
||||
: DecoratedReader(reader), pass_num_(pass_num), pass_count_(0) {}
|
||||
|
||||
void ReadNext(std::vector<framework::LoDTensor>* out) override {
|
||||
if (!HasNext()) {
|
||||
PADDLE_THROW("There is no next data!");
|
||||
}
|
||||
reader_->ReadNext(out);
|
||||
}
|
||||
|
||||
bool HasNext() const override {
|
||||
if (reader_->HasNext()) {
|
||||
return true;
|
||||
} else {
|
||||
++pass_count_;
|
||||
if (pass_count_ >= pass_num_) {
|
||||
return false;
|
||||
} else {
|
||||
reader_->ReInit();
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ReInit() override {
|
||||
pass_count_ = 0;
|
||||
reader_->ReInit();
|
||||
}
|
||||
|
||||
private:
|
||||
int pass_num_;
|
||||
mutable int pass_count_;
|
||||
};
|
||||
|
||||
class CreateMultiPassReaderOp : public framework::OperatorBase {
|
||||
public:
|
||||
using framework::OperatorBase::OperatorBase;
|
||||
|
||||
private:
|
||||
void RunImpl(const framework::Scope& scope,
|
||||
const platform::Place& dev_place) const override {
|
||||
const auto& underlying_reader = scope.FindVar(Input("UnderlyingReader"))
|
||||
->Get<framework::ReaderHolder>();
|
||||
auto& out = detail::Ref(scope.FindVar(Output("Out")));
|
||||
int pass_num = Attr<int>("pass_num");
|
||||
out.GetMutable<framework::ReaderHolder>()->Reset(
|
||||
new MultiPassReader(underlying_reader.Get(), pass_num));
|
||||
}
|
||||
};
|
||||
|
||||
class CreateMultiPassReaderOpMaker : public DecoratedReaderMakerBase {
|
||||
public:
|
||||
CreateMultiPassReaderOpMaker(OpProto* op_proto, OpAttrChecker* op_checker)
|
||||
: DecoratedReaderMakerBase(op_proto, op_checker) {
|
||||
AddAttr<int>("pass_num", "The number of pass to run.").GreaterThan(0);
|
||||
AddComment(R"DOC(
|
||||
CreateMultiPassReader Operator
|
||||
|
||||
This operator creates a multi-pass reader. A multi-pass reader
|
||||
is used to yield data for several pass training continuously.
|
||||
It takes the the number of pass to run as one of its attributes
|
||||
('pass_num'), and maintains a pass counter to record how many
|
||||
passes it has completed. When the underlying reader reach the EOF,
|
||||
the multi-pass reader checks whether it has completed training
|
||||
of the given number of pass. If not, the underlying reader will
|
||||
be re-initialized and starts a new pass automatically.
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace reader
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators::reader;
|
||||
REGISTER_DECORATED_READER_OPERATOR(create_multi_pass_reader,
|
||||
ops::CreateMultiPassReaderOp,
|
||||
ops::CreateMultiPassReaderOpMaker);
|
@ -0,0 +1,212 @@
|
||||
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "paddle/fluid/framework/channel.h"
|
||||
#include "paddle/fluid/operators/reader/reader_op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
namespace reader {
|
||||
|
||||
class MultipleReader : public framework::ReaderBase {
|
||||
public:
|
||||
MultipleReader(const std::vector<std::string>& file_names,
|
||||
const std::vector<framework::DDim>& dims, size_t thread_num)
|
||||
: file_names_(file_names), dims_(dims) {
|
||||
prefetchers_.resize(thread_num);
|
||||
StartNewScheduler();
|
||||
}
|
||||
|
||||
void ReadNext(std::vector<framework::LoDTensor>* out) override;
|
||||
bool HasNext() const override;
|
||||
void ReInit() override;
|
||||
|
||||
~MultipleReader() { EndScheduler(); }
|
||||
|
||||
private:
|
||||
void StartNewScheduler();
|
||||
void EndScheduler();
|
||||
void ScheduleThreadFunc();
|
||||
void PrefetchThreadFunc(std::string file_name, size_t thread_idx);
|
||||
|
||||
std::vector<std::string> file_names_;
|
||||
std::vector<framework::DDim> dims_;
|
||||
std::thread scheduler_;
|
||||
std::vector<std::thread> prefetchers_;
|
||||
framework::Channel<size_t>* waiting_file_idx_;
|
||||
framework::Channel<size_t>* available_thread_idx_;
|
||||
framework::Channel<std::vector<framework::LoDTensor>>* buffer_;
|
||||
mutable std::vector<framework::LoDTensor> local_buffer_;
|
||||
};
|
||||
|
||||
void MultipleReader::ReadNext(std::vector<framework::LoDTensor>* out) {
|
||||
if (!HasNext()) {
|
||||
PADDLE_THROW("There is no next data!");
|
||||
}
|
||||
|
||||
if (local_buffer_.empty()) {
|
||||
buffer_->Receive(&local_buffer_);
|
||||
}
|
||||
*out = local_buffer_;
|
||||
local_buffer_.clear();
|
||||
}
|
||||
|
||||
bool MultipleReader::HasNext() const {
|
||||
return local_buffer_.empty() ? buffer_->Receive(&local_buffer_) : true;
|
||||
}
|
||||
|
||||
void MultipleReader::ReInit() {
|
||||
EndScheduler();
|
||||
local_buffer_.clear();
|
||||
StartNewScheduler();
|
||||
}
|
||||
|
||||
void MultipleReader::StartNewScheduler() {
|
||||
size_t thread_num = prefetchers_.size();
|
||||
waiting_file_idx_ = framework::MakeChannel<size_t>(file_names_.size());
|
||||
available_thread_idx_ = framework::MakeChannel<size_t>(thread_num);
|
||||
buffer_ =
|
||||
framework::MakeChannel<std::vector<framework::LoDTensor>>(thread_num);
|
||||
|
||||
for (size_t i = 0; i < file_names_.size(); ++i) {
|
||||
waiting_file_idx_->Send(&i);
|
||||
}
|
||||
waiting_file_idx_->Close();
|
||||
for (size_t i = 0; i < thread_num; ++i) {
|
||||
available_thread_idx_->Send(&i);
|
||||
}
|
||||
|
||||
scheduler_ = std::thread([this] { ScheduleThreadFunc(); });
|
||||
}
|
||||
|
||||
void MultipleReader::EndScheduler() {
|
||||
available_thread_idx_->Close();
|
||||
buffer_->Close();
|
||||
waiting_file_idx_->Close();
|
||||
if (scheduler_.joinable()) {
|
||||
scheduler_.join();
|
||||
}
|
||||
delete buffer_;
|
||||
delete available_thread_idx_;
|
||||
delete waiting_file_idx_;
|
||||
}
|
||||
|
||||
void MultipleReader::ScheduleThreadFunc() {
|
||||
VLOG(5) << "MultipleReader schedule thread starts.";
|
||||
size_t completed_thread_num = 0;
|
||||
size_t thread_idx;
|
||||
while (available_thread_idx_->Receive(&thread_idx)) {
|
||||
std::thread& prefetcher = prefetchers_[thread_idx];
|
||||
if (prefetcher.joinable()) {
|
||||
prefetcher.join();
|
||||
}
|
||||
size_t file_idx;
|
||||
if (waiting_file_idx_->Receive(&file_idx)) {
|
||||
// Still have files to read. Start a new prefetch thread.
|
||||
std::string file_name = file_names_[file_idx];
|
||||
prefetcher = std::thread([this, file_name, thread_idx] {
|
||||
PrefetchThreadFunc(file_name, thread_idx);
|
||||
});
|
||||
} else {
|
||||
// No more file to read.
|
||||
++completed_thread_num;
|
||||
if (completed_thread_num == prefetchers_.size()) {
|
||||
buffer_->Close();
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
// If users invoke ReInit() when scheduler is running, it will close the
|
||||
// 'avaiable_thread_idx_' and prefecther threads have no way to tell scheduler
|
||||
// to release their resource. So a check is needed before scheduler ends.
|
||||
for (auto& p : prefetchers_) {
|
||||
if (p.joinable()) {
|
||||
p.join();
|
||||
}
|
||||
}
|
||||
VLOG(5) << "MultipleReader schedule thread terminates.";
|
||||
}
|
||||
|
||||
void MultipleReader::PrefetchThreadFunc(std::string file_name,
|
||||
size_t thread_idx) {
|
||||
VLOG(5) << "The prefetch thread of file '" << file_name << "' starts.";
|
||||
std::unique_ptr<framework::ReaderBase> reader =
|
||||
CreateReaderByFileName(file_name, dims_);
|
||||
while (reader->HasNext()) {
|
||||
std::vector<framework::LoDTensor> ins;
|
||||
reader->ReadNext(&ins);
|
||||
if (!buffer_->Send(&ins)) {
|
||||
VLOG(5) << "WARNING: The buffer channel has been closed. The prefetch "
|
||||
"thread of file '"
|
||||
<< file_name << "' will terminate.";
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!available_thread_idx_->Send(&thread_idx)) {
|
||||
VLOG(5) << "WARNING: The available_thread_idx_ channel has been closed. "
|
||||
"Fail to send thread_idx.";
|
||||
}
|
||||
VLOG(5) << "The prefetch thread of file '" << file_name << "' terminates.";
|
||||
}
|
||||
|
||||
class OpenFilesOp : public framework::OperatorBase {
|
||||
public:
|
||||
using framework::OperatorBase::OperatorBase;
|
||||
|
||||
private:
|
||||
void RunImpl(const framework::Scope& scope,
|
||||
const platform::Place& dev_place) const override {
|
||||
const auto& shape_concat = Attr<std::vector<int>>("shape_concat");
|
||||
const auto& ranks = Attr<std::vector<int>>("ranks");
|
||||
PADDLE_ENFORCE(!shape_concat.empty() && !ranks.empty());
|
||||
PADDLE_ENFORCE_EQ(std::accumulate(ranks.begin(), ranks.end(), 0),
|
||||
int(shape_concat.size()),
|
||||
"The accumulate of all ranks should be equal to the "
|
||||
"shape concat's length.");
|
||||
const auto& file_names = Attr<std::vector<std::string>>("file_names");
|
||||
PADDLE_ENFORCE(!file_names.empty(), "No file to be read!");
|
||||
const size_t thread_num = Attr<int>("thread_num");
|
||||
|
||||
auto* out = scope.FindVar(Output("Out"))
|
||||
->template GetMutable<framework::ReaderHolder>();
|
||||
out->Reset(new MultipleReader(
|
||||
file_names, RestoreShapes(shape_concat, ranks), thread_num));
|
||||
}
|
||||
};
|
||||
|
||||
class OpenFilesOpMaker : public FileReaderMakerBase {
|
||||
public:
|
||||
OpenFilesOpMaker(OpProto* op_proto, OpAttrChecker* op_checker)
|
||||
: FileReaderMakerBase(op_proto, op_checker) {
|
||||
AddAttr<std::vector<std::string>>("file_names", "Files to be read.");
|
||||
AddAttr<int>("thread_num", "The maximal concurrent prefetch thread number.")
|
||||
.GreaterThan(0);
|
||||
|
||||
AddComment(R"DOC(
|
||||
OpenFiles Operator
|
||||
|
||||
An OpenFilesOp creates a MultipleReader, which is able to
|
||||
read data multi-threaded from multiple files.
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace reader
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace reader = paddle::operators::reader;
|
||||
|
||||
REGISTER_FILE_READER_OPERATOR(open_files, reader::OpenFilesOp,
|
||||
reader::OpenFilesOpMaker);
|
@ -0,0 +1,84 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "mkldnn.hpp"
|
||||
#include "paddle/fluid/operators/softmax_op.h"
|
||||
#include "paddle/fluid/platform/mkldnn_helper.h"
|
||||
|
||||
#include <iostream>
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using paddle::framework::Tensor;
|
||||
using paddle::platform::MKLDNNDeviceContext;
|
||||
using paddle::platform::MKLDNNMemDesc;
|
||||
|
||||
using mkldnn::memory; // Note: paddle has also "memory" namespace
|
||||
using mkldnn::primitive;
|
||||
using mkldnn::softmax_forward;
|
||||
using mkldnn::prop_kind;
|
||||
using mkldnn::stream;
|
||||
|
||||
template <typename T>
|
||||
class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
|
||||
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
|
||||
"It must use CPUPlace.");
|
||||
auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
|
||||
auto mkldnn_engine = dev_ctx.GetEngine();
|
||||
const Tensor* input = ctx.Input<Tensor>("X");
|
||||
Tensor* output = ctx.Output<Tensor>("Out");
|
||||
PADDLE_ENFORCE(input->dims().size() == 2UL,
|
||||
"The input of softmax op must be a 2D matrix.");
|
||||
const T* input_data = input->data<T>();
|
||||
// allocate memory for output
|
||||
T* output_data = output->mutable_data<T>(ctx.GetPlace());
|
||||
std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
|
||||
std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
|
||||
// MKL-DNN does support softmax over selected axis. Having 2D Tensor,
|
||||
// we will make normalization after final eg. axis: 1
|
||||
PADDLE_ENFORCE(((src_tz[0] == dst_tz[0]) && (src_tz[1] == dst_tz[1])),
|
||||
"Softmax input and output dimensions should match");
|
||||
// Same memory descriptor to be used for input and output
|
||||
memory::dims softmax_tz = {src_tz[0], src_tz[1]};
|
||||
// Currently only supports NC data format
|
||||
// TODO(jczaja-intel): support more formats
|
||||
auto softmax_md =
|
||||
MKLDNNMemDesc({softmax_tz}, memory::f32, memory::format::nc);
|
||||
// Normalization is made after innermost dimension eg. C out of NC
|
||||
auto softmax_desc = softmax_forward::desc(prop_kind::forward_scoring,
|
||||
softmax_md, 1 /*dim: C*/);
|
||||
// create memory primitives
|
||||
auto softmax_src_memory =
|
||||
memory({softmax_md, mkldnn_engine}, (void*)input_data);
|
||||
auto softmax_dst_memory =
|
||||
memory({softmax_md, mkldnn_engine}, (void*)output_data);
|
||||
auto softmax_prim_desc =
|
||||
softmax_forward::primitive_desc(softmax_desc, mkldnn_engine);
|
||||
auto softmax = softmax_forward(softmax_prim_desc, softmax_src_memory,
|
||||
softmax_dst_memory);
|
||||
std::vector<primitive> pipeline{softmax};
|
||||
stream(stream::kind::eager).submit(pipeline).wait();
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
|
||||
REGISTER_OP_KERNEL(softmax, MKLDNN, ::paddle::platform::CPUPlace,
|
||||
ops::SoftmaxMKLDNNKernel<float>);
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in new issue