add rpn target assign op (#11449)
* Add region proposal network (RPN) target assign operator and Python API for Faster-RCNN.guochaorong-patch-1
parent
6a749d126f
commit
50aa6ba6f5
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,103 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
import paddle.fluid.core as core
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
def rpn_target_assign(iou, rpn_batch_size_per_im, rpn_positive_overlap,
|
||||
rpn_negative_overlap, fg_fraction):
|
||||
iou = np.transpose(iou)
|
||||
anchor_to_gt_max = iou.max(axis=1)
|
||||
gt_to_anchor_argmax = iou.argmax(axis=0)
|
||||
gt_to_anchor_max = iou[gt_to_anchor_argmax, np.arange(iou.shape[1])]
|
||||
anchors_with_max_overlap = np.where(iou == gt_to_anchor_max)[0]
|
||||
|
||||
tgt_lbl = np.ones((iou.shape[0], ), dtype=np.int32) * -1
|
||||
tgt_lbl[anchors_with_max_overlap] = 1
|
||||
tgt_lbl[anchor_to_gt_max >= rpn_positive_overlap] = 1
|
||||
|
||||
num_fg = int(fg_fraction * rpn_batch_size_per_im)
|
||||
fg_inds = np.where(tgt_lbl == 1)[0]
|
||||
if len(fg_inds) > num_fg:
|
||||
disable_inds = np.random.choice(
|
||||
fg_inds, size=(len(fg_inds) - num_fg), replace=False)
|
||||
tgt_lbl[disable_inds] = -1
|
||||
fg_inds = np.where(tgt_lbl == 1)[0]
|
||||
|
||||
num_bg = rpn_batch_size_per_im - np.sum(tgt_lbl == 1)
|
||||
bg_inds = np.where(anchor_to_gt_max < rpn_negative_overlap)[0]
|
||||
if len(bg_inds) > num_bg:
|
||||
enable_inds = bg_inds[np.random.randint(len(bg_inds), size=num_bg)]
|
||||
tgt_lbl[enable_inds] = 0
|
||||
bg_inds = np.where(tgt_lbl == 0)[0]
|
||||
|
||||
loc_index = fg_inds
|
||||
score_index = np.hstack((fg_inds, bg_inds))
|
||||
tgt_lbl = np.expand_dims(tgt_lbl, axis=1)
|
||||
return loc_index, score_index, tgt_lbl
|
||||
|
||||
|
||||
class TestRpnTargetAssignOp(OpTest):
|
||||
def setUp(self):
|
||||
iou = np.random.random((10, 8)).astype("float32")
|
||||
self.op_type = "rpn_target_assign"
|
||||
self.inputs = {'DistMat': iou}
|
||||
self.attrs = {
|
||||
'rpn_batch_size_per_im': 256,
|
||||
'rpn_positive_overlap': 0.95,
|
||||
'rpn_negative_overlap': 0.3,
|
||||
'fg_fraction': 0.25,
|
||||
'fix_seed': True
|
||||
}
|
||||
loc_index, score_index, tgt_lbl = rpn_target_assign(iou, 256, 0.95, 0.3,
|
||||
0.25)
|
||||
self.outputs = {
|
||||
'LocationIndex': loc_index,
|
||||
'ScoreIndex': score_index,
|
||||
'TargetLabel': tgt_lbl,
|
||||
}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
|
||||
class TestRpnTargetAssignOp2(OpTest):
|
||||
def setUp(self):
|
||||
iou = np.random.random((10, 20)).astype("float32")
|
||||
self.op_type = "rpn_target_assign"
|
||||
self.inputs = {'DistMat': iou}
|
||||
self.attrs = {
|
||||
'rpn_batch_size_per_im': 128,
|
||||
'rpn_positive_overlap': 0.5,
|
||||
'rpn_negative_overlap': 0.5,
|
||||
'fg_fraction': 0.5,
|
||||
'fix_seed': True
|
||||
}
|
||||
loc_index, score_index, tgt_lbl = rpn_target_assign(iou, 128, 0.5, 0.5,
|
||||
0.5)
|
||||
self.outputs = {
|
||||
'LocationIndex': loc_index,
|
||||
'ScoreIndex': score_index,
|
||||
'TargetLabel': tgt_lbl,
|
||||
}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue