parent
33d9999890
commit
510f00800a
@ -0,0 +1,108 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
def max_pool3D_forward_naive(x, ksize, strides, paddings=[0, 0]):
|
||||
|
||||
N, C, D, H, W = x.shape
|
||||
D_out = (D - ksize[0] + 2 * paddings[0]) / strides[0] + 1
|
||||
H_out = (H - ksize[1] + 2 * paddings[1]) / strides[1] + 1
|
||||
W_out = (W - ksize[2] + 2 * paddings[2]) / strides[2] + 1
|
||||
out = np.zeros((N, C, D_out, H_out, W_out))
|
||||
for k in xrange(D_out):
|
||||
d_start = np.max((k * strides[0] - paddings[0], 0))
|
||||
d_end = np.min((k * strides[0] + ksize[0] - paddings[0], D))
|
||||
for i in xrange(H_out):
|
||||
h_start = np.max((i * strides[0] - paddings[0], 0))
|
||||
h_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
|
||||
for j in xrange(W_out):
|
||||
w_start = np.max((j * strides[1] - paddings[1], 0))
|
||||
w_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
|
||||
|
||||
x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:w_end]
|
||||
|
||||
out[:, :, k, i, j] = np.max(x_masked, axis=(2, 3, 4))
|
||||
return out
|
||||
|
||||
|
||||
def ave_pool3D_forward_naive(x, ksize, strides, paddings=[0, 0]):
|
||||
|
||||
N, C, D, H, W = x.shape
|
||||
D_out = (D - ksize[0] + 2 * paddings[0]) / strides[0] + 1
|
||||
H_out = (H - ksize[1] + 2 * paddings[1]) / strides[1] + 1
|
||||
W_out = (W - ksize[2] + 2 * paddings[2]) / strides[2] + 1
|
||||
out = np.zeros((N, C, D_out, H_out, W_out))
|
||||
for k in xrange(D_out):
|
||||
d_start = np.max((k * strides[0] - paddings[0], 0))
|
||||
d_end = np.min((k * strides[0] + ksize[0] - paddings[0], D))
|
||||
for i in xrange(H_out):
|
||||
h_start = np.max((i * strides[0] - paddings[0], 0))
|
||||
h_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
|
||||
for j in xrange(W_out):
|
||||
w_start = np.max((j * strides[1] - paddings[1], 0))
|
||||
w_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
|
||||
|
||||
x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:w_end]
|
||||
|
||||
out[:, :, k, i, j] = np.sum(x_masked, axis=(2, 3, 4)) / (
|
||||
(d_end - d_start) * (h_end - h_start) * (w_end - w_start))
|
||||
return out
|
||||
|
||||
|
||||
class TestPool3d_Op(OpTest):
|
||||
def setUp(self):
|
||||
self.initTestCase()
|
||||
self.op_type = "pool3d"
|
||||
input = np.random.random(self.shape).astype("float32")
|
||||
output = self.pool3D_forward_naive(input, self.ksize, self.strides,
|
||||
self.paddings)
|
||||
self.inputs = {'Input': input}
|
||||
|
||||
self.attrs = {
|
||||
'strides': self.strides,
|
||||
'paddings': self.paddings,
|
||||
'ksize': self.ksize,
|
||||
'pooling_type': self.pool_type,
|
||||
}
|
||||
|
||||
self.outputs = {'Output': output}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(set(['Input']), 'Output', max_relative_error=0.07)
|
||||
|
||||
def initTestCase(self):
|
||||
self.pool_type = "ave"
|
||||
self.pool3D_forward_naive = ave_pool3D_forward_naive
|
||||
self.shape = [2, 3, 5, 5, 5]
|
||||
self.ksize = [3, 3, 3]
|
||||
self.strides = [1, 1, 1]
|
||||
self.paddings = [0, 0, 0]
|
||||
|
||||
|
||||
class TestCase1(TestPool3d_Op):
|
||||
def initTestCase(self):
|
||||
self.op_type = "pool3d"
|
||||
self.pool_type = "ave"
|
||||
self.pool3D_forward_naive = ave_pool3D_forward_naive
|
||||
self.shape = [2, 3, 7, 7, 7]
|
||||
self.ksize = [3, 3, 3]
|
||||
self.strides = [1, 1, 1]
|
||||
self.paddings = [1, 1, 1]
|
||||
|
||||
|
||||
# class TestCase2(TestPool3d_Op):
|
||||
# def initTestCase(self):
|
||||
# self.op_type = "pool3d"
|
||||
# self.pool_type = "max"
|
||||
# self.pool3D_forward_naive = max_pool3D_forward_naive
|
||||
# self.shape = [2, 3, 5, 5, 5]
|
||||
# self.ksize = [3, 3, 3]
|
||||
# self.strides = [1, 1, 1]
|
||||
# self.paddings = [1, 1, 1]
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue