add empty_like op (python, and unit test), use c++ implementation of empty op, (#27287)
and optimize the c++ implmentation of empty op as PR#26659 reviews, and add bool for shape op.revert-27520-disable_pr
parent
f36b9a7f79
commit
515efe4240
@ -0,0 +1,192 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid.data_feeder import convert_dtype
|
||||
import paddle.fluid.core as core
|
||||
from paddle.static import program_guard, Program
|
||||
|
||||
|
||||
class TestEmptyLikeAPICommon(unittest.TestCase):
|
||||
def __check_out__(self, out):
|
||||
data_type = convert_dtype(out.dtype)
|
||||
self.assertEqual(data_type, self.dst_dtype,
|
||||
'dtype should be %s, but get %s' %
|
||||
(self.dst_dtype, data_type))
|
||||
|
||||
shape = out.shape
|
||||
self.assertTupleEqual(shape, self.dst_shape,
|
||||
'shape should be %s, but get %s' %
|
||||
(self.dst_shape, shape))
|
||||
|
||||
if data_type in ['float32', 'float64', 'int32', 'int64']:
|
||||
max_value = np.nanmax(out)
|
||||
min_value = np.nanmin(out)
|
||||
always_non_full_zero = max_value > min_value
|
||||
always_full_zero = max_value == 0.0 and min_value == 0.0
|
||||
self.assertTrue(always_full_zero or always_non_full_zero,
|
||||
'always_full_zero or always_non_full_zero.')
|
||||
elif data_type in ['bool']:
|
||||
total_num = out.size
|
||||
true_num = np.sum(out == True)
|
||||
false_num = np.sum(out == False)
|
||||
self.assertTrue(total_num == true_num + false_num,
|
||||
'The value should always be True or False.')
|
||||
else:
|
||||
self.assertTrue(False, 'invalid data type')
|
||||
|
||||
|
||||
class TestEmptyLikeAPI(TestEmptyLikeAPICommon):
|
||||
def setUp(self):
|
||||
self.init_config()
|
||||
|
||||
def test_dygraph_api_out(self):
|
||||
paddle.disable_static()
|
||||
out = paddle.empty_like(self.x, self.dtype)
|
||||
self.__check_out__(out.numpy())
|
||||
paddle.enable_static()
|
||||
|
||||
def init_config(self):
|
||||
self.x = np.random.random((200, 3)).astype("float32")
|
||||
self.dtype = self.x.dtype
|
||||
self.dst_shape = self.x.shape
|
||||
self.dst_dtype = self.dtype
|
||||
|
||||
|
||||
class TestEmptyLikeAPI2(TestEmptyLikeAPI):
|
||||
def init_config(self):
|
||||
self.x = np.random.random((200, 3)).astype("float64")
|
||||
self.dtype = self.x.dtype
|
||||
self.dst_shape = self.x.shape
|
||||
self.dst_dtype = self.dtype
|
||||
|
||||
|
||||
class TestEmptyLikeAPI3(TestEmptyLikeAPI):
|
||||
def init_config(self):
|
||||
self.x = np.random.random((200, 3)).astype("int")
|
||||
self.dtype = self.x.dtype
|
||||
self.dst_shape = self.x.shape
|
||||
self.dst_dtype = self.dtype
|
||||
|
||||
|
||||
class TestEmptyLikeAPI4(TestEmptyLikeAPI):
|
||||
def init_config(self):
|
||||
self.x = np.random.random((200, 3)).astype("int64")
|
||||
self.dtype = self.x.dtype
|
||||
self.dst_shape = self.x.shape
|
||||
self.dst_dtype = self.dtype
|
||||
|
||||
|
||||
class TestEmptyLikeAPI5(TestEmptyLikeAPI):
|
||||
def init_config(self):
|
||||
self.x = np.random.random((200, 3)).astype("bool")
|
||||
self.dtype = self.x.dtype
|
||||
self.dst_shape = self.x.shape
|
||||
self.dst_dtype = self.dtype
|
||||
|
||||
|
||||
class TestEmptyLikeAPI6(TestEmptyLikeAPI):
|
||||
def init_config(self):
|
||||
self.x = np.random.random((200, 3)).astype("float64")
|
||||
self.dtype = "float32"
|
||||
self.dst_shape = self.x.shape
|
||||
self.dst_dtype = self.dtype
|
||||
|
||||
|
||||
class TestEmptyLikeAPI7(TestEmptyLikeAPI):
|
||||
def init_config(self):
|
||||
self.x = np.random.random((200, 3)).astype("int")
|
||||
self.dtype = "float32"
|
||||
self.dst_shape = self.x.shape
|
||||
self.dst_dtype = self.dtype
|
||||
|
||||
|
||||
class TestEmptyLikeAPI8(TestEmptyLikeAPI):
|
||||
def init_config(self):
|
||||
self.x = np.random.random((200, 3)).astype("int64")
|
||||
self.dtype = "float32"
|
||||
self.dst_shape = self.x.shape
|
||||
self.dst_dtype = self.dtype
|
||||
|
||||
|
||||
class TestEmptyLikeAPI9(TestEmptyLikeAPI):
|
||||
def init_config(self):
|
||||
self.x = np.random.random((200, 3)).astype("bool")
|
||||
self.dtype = "float32"
|
||||
self.dst_shape = self.x.shape
|
||||
self.dst_dtype = self.dtype
|
||||
|
||||
|
||||
class TestEmptyLikeAPI10(TestEmptyLikeAPI):
|
||||
def init_config(self):
|
||||
self.x = np.random.random((200, 3)).astype("float32")
|
||||
self.dtype = "bool"
|
||||
self.dst_shape = self.x.shape
|
||||
self.dst_dtype = self.dtype
|
||||
|
||||
|
||||
class TestEmptyLikeAPI_Static(TestEmptyLikeAPICommon):
|
||||
def setUp(self):
|
||||
self.init_config()
|
||||
|
||||
def test_static_graph(self):
|
||||
dtype = 'float32'
|
||||
|
||||
train_program = Program()
|
||||
startup_program = Program()
|
||||
|
||||
with program_guard(train_program, startup_program):
|
||||
x = np.random.random(self.x_shape).astype(dtype)
|
||||
data_x = paddle.static.data(
|
||||
'x', shape=self.data_x_shape, dtype=dtype)
|
||||
|
||||
out = paddle.empty_like(data_x)
|
||||
|
||||
place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda(
|
||||
) else paddle.CPUPlace()
|
||||
exe = paddle.static.Executor(place)
|
||||
res = exe.run(train_program, feed={'x': x}, fetch_list=[out])
|
||||
|
||||
self.dst_dtype = dtype
|
||||
self.dst_shape = x.shape
|
||||
self.__check_out__(res[0])
|
||||
|
||||
def init_config(self):
|
||||
self.x_shape = (200, 3)
|
||||
self.data_x_shape = [200, 3]
|
||||
|
||||
|
||||
class TestEmptyLikeAPI_Static2(TestEmptyLikeAPI_Static):
|
||||
def init_config(self):
|
||||
self.x_shape = (3, 200, 3)
|
||||
self.data_x_shape = [-1, 200, 3]
|
||||
|
||||
|
||||
class TestEmptyError(unittest.TestCase):
|
||||
def test_attr(self):
|
||||
def test_dtype():
|
||||
x = np.random.random((200, 3)).astype("float64")
|
||||
dtype = 'uint8'
|
||||
result = paddle.empty_like(x, dtype=dtype)
|
||||
|
||||
self.assertRaises(TypeError, test_dtype)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue