|
|
|
@ -52,7 +52,7 @@ def grad_var_name(var_name):
|
|
|
|
|
return var_name + "@GRAD"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def sgd_optimizer(net, param_name, learning_rate=0.01):
|
|
|
|
|
def sgd_optimizer(net, param_name, learning_rate=0.001):
|
|
|
|
|
grad_name = grad_var_name(param_name)
|
|
|
|
|
optimize_op = Operator(
|
|
|
|
|
"sgd",
|
|
|
|
@ -65,7 +65,6 @@ def sgd_optimizer(net, param_name, learning_rate=0.01):
|
|
|
|
|
|
|
|
|
|
# should use operator and add these to the init_network
|
|
|
|
|
def init_param(param_name, dims):
|
|
|
|
|
print param_name
|
|
|
|
|
var = scope.new_var(param_name)
|
|
|
|
|
tensor = var.get_tensor()
|
|
|
|
|
tensor.set_dims(dims)
|
|
|
|
@ -158,17 +157,34 @@ def print_inputs_outputs(op):
|
|
|
|
|
print("")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def set_cost():
|
|
|
|
|
cost_data = numpy.array(scope.find_var("cross_entropy_1").get_tensor())
|
|
|
|
|
# print(cost_data)
|
|
|
|
|
print(cost_data.sum() / len(cost_data))
|
|
|
|
|
|
|
|
|
|
cost_grad = scope.find_var(grad_var_name("cross_entropy_1")).get_tensor()
|
|
|
|
|
cost_grad.set_dims(cost_data.shape)
|
|
|
|
|
cost_grad.alloc_float(place)
|
|
|
|
|
cost_grad.set(cost_data, place)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
images = data_layer(name='pixel', dims=[BATCH_SIZE, 784])
|
|
|
|
|
label = data_layer(name='label', dims=[BATCH_SIZE])
|
|
|
|
|
fc = fc_layer(net=forward_network, input=images, size=10, act="softmax")
|
|
|
|
|
cost = cross_entropy_layer(net=forward_network, input=fc, label=label)
|
|
|
|
|
|
|
|
|
|
forward_network.complete_add_op(True)
|
|
|
|
|
print(forward_network)
|
|
|
|
|
backward_net = get_backward_net(forward_network)
|
|
|
|
|
print(backward_net)
|
|
|
|
|
optimize_net.complete_add_op(True)
|
|
|
|
|
|
|
|
|
|
print(forward_network)
|
|
|
|
|
print(backward_net)
|
|
|
|
|
print(optimize_net)
|
|
|
|
|
|
|
|
|
|
print_inputs_outputs(forward_network)
|
|
|
|
|
print_inputs_outputs(backward_net)
|
|
|
|
|
print_inputs_outputs(optimize_net)
|
|
|
|
|
|
|
|
|
|
reader = paddle.batch(
|
|
|
|
|
paddle.reader.shuffle(
|
|
|
|
|
paddle.dataset.mnist.train(), buf_size=8192),
|
|
|
|
@ -176,34 +192,17 @@ reader = paddle.batch(
|
|
|
|
|
|
|
|
|
|
PASS_NUM = 1000
|
|
|
|
|
for pass_id in range(PASS_NUM):
|
|
|
|
|
print("===========forward==========")
|
|
|
|
|
# feed_data("pixel", numpy.random.random((BATCH_SIZE, 784)).astype('float32'))
|
|
|
|
|
# feed_data("label", numpy.ones(BATCH_SIZE).astype("int32"))
|
|
|
|
|
data = reader().next()
|
|
|
|
|
|
|
|
|
|
image = numpy.array(map(lambda x: x[0], data)).astype("float32")
|
|
|
|
|
label = numpy.array(map(lambda x: x[1], data)).astype("int32")
|
|
|
|
|
feed_data("pixel", image)
|
|
|
|
|
feed_data("label", label)
|
|
|
|
|
forward_network.infer_shape(scope)
|
|
|
|
|
print_inputs_outputs(forward_network)
|
|
|
|
|
|
|
|
|
|
# print(numpy.array(scope.find_var("label").get_tensor()))
|
|
|
|
|
forward_network.infer_shape(scope)
|
|
|
|
|
forward_network.run(scope, dev_ctx)
|
|
|
|
|
# print(numpy.array(scope.find_var("fc_0").get_tensor()))
|
|
|
|
|
|
|
|
|
|
print("===========backward==========")
|
|
|
|
|
cost_data = numpy.array(scope.find_var("cross_entropy_1").get_tensor())
|
|
|
|
|
print(cost_data.sum() / len(cost_data))
|
|
|
|
|
cost_grad = scope.find_var(grad_var_name("cross_entropy_1")).get_tensor()
|
|
|
|
|
cost_grad.set_dims(cost_data.shape)
|
|
|
|
|
cost_grad.alloc_float(place)
|
|
|
|
|
cost_grad.set(cost_data, place)
|
|
|
|
|
|
|
|
|
|
set_cost()
|
|
|
|
|
backward_net.infer_shape(scope)
|
|
|
|
|
print_inputs_outputs(backward_net)
|
|
|
|
|
|
|
|
|
|
backward_net.run(scope, dev_ctx)
|
|
|
|
|
|
|
|
|
|
print("===========optimize_net==========")
|
|
|
|
|
print_inputs_outputs(optimize_net)
|
|
|
|
|
optimize_net.run(scope, dev_ctx)
|
|
|
|
|