"move Tensor to LoDTensor"

fix-typo
Dong Zhihong 8 years ago
parent 63fb41b399
commit 5200c657a7

@ -74,8 +74,15 @@ class NCCLAllReduceOp : public framework::OperatorWithKernel {
// reduction == "ncclMin" || reduction == "ncclMax"),
// "invalid reduction.");
// auto in_dim = x_dims[0];
ctx->SetOutputsDim("Out", x_dims);
ctx->ShareLoD("X", /*->*/ "Out");
size_t N = x_dims.size();
auto out_dims = ctx->GetOutputsDim("Out");
for (size_t i = 0; i < N; ++i) {
VLOG(1) << " inference (X) " << framework::product(x_dims[i]) << " (Out)"
<< framework::product(out_dims[i]);
}
}
};

@ -12,6 +12,7 @@ limitations under the License. */
#define EIGEN_USE_GPU
#include <functional>
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/nccl/nccl_gpu_common.h"
@ -20,6 +21,7 @@ namespace operators {
using framework::Tensor;
using platform::Communicator;
using framework::LoDTensor;
template <typename Type>
class NCCLTypeWrapper;
@ -43,8 +45,8 @@ class NCCLAllReduceKernel : public framework::OpKernel<T> {
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
"This kernel only runs on GPU device.");
auto ins = ctx.MultiInput<Tensor>("X");
auto outs = ctx.MultiOutput<Tensor>("Out");
auto ins = ctx.MultiInput<LoDTensor>("X");
auto outs = ctx.MultiOutput<LoDTensor>("Out");
auto* comm = ctx.Input<Communicator>("Communicator");
@ -56,12 +58,24 @@ class NCCLAllReduceKernel : public framework::OpKernel<T> {
boost::get<platform::GPUPlace>(ctx.GetPlace()).GetDeviceId();
int idx = comm->GetCommId(device_id);
size_t N = ins.size();
for (size_t i = 0; i < N; ++i) {
VLOG(1) << " inference (X) " << framework::product(ins[i]->dims())
<< " (Out)" << framework::product(outs[i]->dims());
}
for (size_t i = 0; i < ins.size(); ++i) {
VLOG(1) << " invoke allreduce. send " << ins[i]->numel() << " recv "
<< outs[i]->numel();
PADDLE_ENFORCE(platform::dynload::ncclAllReduce(
ins[i]->data<T>(), outs[i]->mutable_data<T>(ctx.GetPlace()),
outs[i]->numel() * sizeof(T), NCCLTypeWrapper<T>::type, ncclSum,
outs[i]->numel(), NCCLTypeWrapper<T>::type, ncclSum,
comm->comms_[idx], stream));
PADDLE_ENFORCE(cudaStreamSynchronize(stream));
VLOG(1) << " finished allreduce. send " << ins[i]->numel() << " recv "
<< outs[i]->numel();
}
}
};

@ -1,50 +0,0 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/op_registry.h"
#include "paddle/operators/nccl/nccl_gpu_common.h"
#include <string.h>
namespace paddle {
namespace operators {
using framework::Tensor;
using platform::Communicator;
template <typename Type>
class NCCLTypeWrapper;
template <>
class NCCLTypeWrapper<float> {
public:
static const ncclDataType_t type = ncclFloat;
};
template <>
class NCCLTypeWrapper<double> {
public:
static const ncclDataType_t type = ncclDouble;
};
template <typename T>
class NCCLInitKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
std::vector<int> gpus = ctx.Attr<std::vector<int>>("gpus");
auto* comm = ctx.Output<Communicator>("Communicator");
comm->InitAll(gpus);
}
};
} // namespace operators
} // namespace paddle

File diff suppressed because it is too large Load Diff
Loading…
Cancel
Save