add kernel for squeeze_op, test=develop (#19656)
* add kernel for squeeze_op, test=develop * delete comment, test=developexpand_as_op_1
parent
2a81c3679a
commit
52673956de
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,44 @@
|
||||
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/fluid/operators/squeeze_op.h"
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
|
||||
REGISTER_OP_CUDA_KERNEL(
|
||||
squeeze, ops::SqueezeKernel<paddle::platform::CUDADeviceContext, float>,
|
||||
ops::SqueezeKernel<paddle::platform::CUDADeviceContext, double>,
|
||||
ops::SqueezeKernel<paddle::platform::CUDADeviceContext, int>,
|
||||
ops::SqueezeKernel<paddle::platform::CUDADeviceContext, int8_t>,
|
||||
ops::SqueezeKernel<paddle::platform::CUDADeviceContext, int64_t>);
|
||||
REGISTER_OP_CUDA_KERNEL(
|
||||
squeeze_grad,
|
||||
ops::SqueezeGradKernel<paddle::platform::CUDADeviceContext, float>,
|
||||
ops::SqueezeGradKernel<paddle::platform::CUDADeviceContext, double>,
|
||||
ops::SqueezeGradKernel<paddle::platform::CUDADeviceContext, int>,
|
||||
ops::SqueezeGradKernel<paddle::platform::CUDADeviceContext, int8_t>,
|
||||
ops::SqueezeGradKernel<paddle::platform::CUDADeviceContext, int64_t>);
|
||||
REGISTER_OP_CUDA_KERNEL(
|
||||
squeeze2, ops::Squeeze2Kernel<paddle::platform::CUDADeviceContext, float>,
|
||||
ops::Squeeze2Kernel<paddle::platform::CUDADeviceContext, double>,
|
||||
ops::Squeeze2Kernel<paddle::platform::CUDADeviceContext, int>,
|
||||
ops::Squeeze2Kernel<paddle::platform::CUDADeviceContext, int8_t>,
|
||||
ops::Squeeze2Kernel<paddle::platform::CUDADeviceContext, int64_t>);
|
||||
REGISTER_OP_CUDA_KERNEL(
|
||||
squeeze2_grad,
|
||||
ops::Squeeze2GradKernel<paddle::platform::CUDADeviceContext, float>,
|
||||
ops::Squeeze2GradKernel<paddle::platform::CUDADeviceContext, double>,
|
||||
ops::Squeeze2GradKernel<paddle::platform::CUDADeviceContext, int>,
|
||||
ops::Squeeze2GradKernel<paddle::platform::CUDADeviceContext, int8_t>,
|
||||
ops::Squeeze2GradKernel<paddle::platform::CUDADeviceContext, int64_t>);
|
@ -0,0 +1,146 @@
|
||||
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <vector>
|
||||
#include "paddle/fluid/framework/op_registry.h"
|
||||
#include "paddle/fluid/operators/math/blas.h"
|
||||
#include "paddle/fluid/operators/math/math_function.h"
|
||||
#include "paddle/fluid/operators/math/pooling.h"
|
||||
#include "paddle/fluid/platform/device_context.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class SqueezeKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext &context) const override {
|
||||
auto *in = context.Input<framework::LoDTensor>("X");
|
||||
auto *out = context.Output<framework::LoDTensor>("Out");
|
||||
|
||||
auto &axes = context.Attr<std::vector<int>>("axes");
|
||||
auto x_dims = in->dims();
|
||||
auto out_dims = GetOutputShape(axes, x_dims);
|
||||
|
||||
out->mutable_data(context.GetPlace(), in->type());
|
||||
framework::TensorCopy(
|
||||
*in, context.GetPlace(),
|
||||
context.template device_context<platform::DeviceContext>(), out);
|
||||
out->Resize(out_dims);
|
||||
}
|
||||
|
||||
static framework::DDim GetOutputShape(const std::vector<int> squeeze_dims,
|
||||
const framework::DDim &in_dims) {
|
||||
size_t num_squeeze_dims = squeeze_dims.size();
|
||||
int cnt_squeezed_dims = 0;
|
||||
bool should_squeeze[9] = {false};
|
||||
|
||||
// Determines number of dimensions of output tensor after squeeze.
|
||||
// Mark and count the dimensions need to be squeezed
|
||||
if (num_squeeze_dims == 0) {
|
||||
for (int idx = 0; idx < in_dims.size(); ++idx) {
|
||||
if (in_dims[idx] == 1) {
|
||||
should_squeeze[idx] = true;
|
||||
++cnt_squeezed_dims;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (size_t idx = 0; idx < num_squeeze_dims; ++idx) {
|
||||
int current = squeeze_dims[idx] < 0 ? squeeze_dims[idx] + in_dims.size()
|
||||
: squeeze_dims[idx];
|
||||
// Check current index, the upper limit has beed checked in line 36.
|
||||
PADDLE_ENFORCE_GE(current, 0,
|
||||
"Invalid axis, the negative axis is out of range.");
|
||||
|
||||
PADDLE_ENFORCE_EQ(in_dims[current], 1,
|
||||
"Invalid axis index, the axis that will be squeezed "
|
||||
"should be equal to 1.");
|
||||
|
||||
if (!(should_squeeze[current])) {
|
||||
++cnt_squeezed_dims;
|
||||
}
|
||||
should_squeeze[current] = true;
|
||||
}
|
||||
}
|
||||
|
||||
// Make output dimensions
|
||||
std::vector<int64_t> output_shape(in_dims.size() - cnt_squeezed_dims, 0);
|
||||
for (int in_idx = 0, out_idx = 0; in_idx < in_dims.size(); ++in_idx) {
|
||||
if (!should_squeeze[in_idx]) {
|
||||
output_shape[out_idx++] = in_dims[in_idx];
|
||||
}
|
||||
}
|
||||
|
||||
return framework::make_ddim(output_shape);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class SqueezeGradKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext &ctx) const override {
|
||||
auto *d_out =
|
||||
ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));
|
||||
auto *d_x = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
|
||||
auto in_dims = ctx.Input<framework::LoDTensor>("X")->dims();
|
||||
|
||||
d_x->mutable_data(ctx.GetPlace(), d_out->type());
|
||||
framework::TensorCopySync(*d_out, ctx.GetPlace(), d_x);
|
||||
d_x->Resize(in_dims);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class Squeeze2Kernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext &context) const override {
|
||||
auto *out = context.Output<framework::LoDTensor>("Out");
|
||||
auto *in = context.Input<framework::LoDTensor>("X");
|
||||
|
||||
auto &axes = context.Attr<std::vector<int>>("axes");
|
||||
|
||||
auto x_dims = in->dims();
|
||||
auto out_dims =
|
||||
SqueezeKernel<DeviceContext, T>::GetOutputShape(axes, x_dims);
|
||||
|
||||
out->mutable_data(context.GetPlace(), in->type());
|
||||
framework::TensorCopy(
|
||||
*in, context.GetPlace(),
|
||||
context.template device_context<platform::DeviceContext>(), out);
|
||||
out->Resize(out_dims);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class Squeeze2GradKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext &ctx) const override {
|
||||
auto *d_out =
|
||||
ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));
|
||||
auto *d_x = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
|
||||
// auto in_dims = d_x->dims();
|
||||
|
||||
auto xshape_dims = ctx.Input<framework::LoDTensor>("XShape")->dims();
|
||||
auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
|
||||
|
||||
d_x->mutable_data(ctx.GetPlace(), d_out->type());
|
||||
framework::TensorCopySync(*d_out, ctx.GetPlace(), d_x);
|
||||
d_x->Resize(x_dims);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,75 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
# Correct: General.
|
||||
class TestSqueezeOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "squeeze2"
|
||||
self.init_test_case()
|
||||
self.inputs = {"X": np.random.random(self.ori_shape).astype("float32")}
|
||||
self.init_attrs()
|
||||
self.outputs = {
|
||||
"Out": self.inputs["X"].reshape(self.new_shape),
|
||||
"XShape": np.random.random(self.ori_shape).astype("float32")
|
||||
}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output(no_check_set=['XShape'])
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(["X"], "Out")
|
||||
|
||||
def init_test_case(self):
|
||||
self.ori_shape = (1, 3, 1, 5)
|
||||
self.axes = (0, 2)
|
||||
self.new_shape = (3, 5)
|
||||
|
||||
def init_attrs(self):
|
||||
self.attrs = {"axes": self.axes}
|
||||
|
||||
|
||||
# Correct: There is mins axis.
|
||||
class TestSqueezeOp1(TestSqueezeOp):
|
||||
def init_test_case(self):
|
||||
self.ori_shape = (1, 3, 1, 5)
|
||||
self.axes = (0, -2)
|
||||
self.new_shape = (3, 5)
|
||||
|
||||
|
||||
# Correct: No axes input.
|
||||
class TestSqueezeOp2(TestSqueezeOp):
|
||||
def init_test_case(self):
|
||||
self.ori_shape = (1, 3, 1, 5)
|
||||
self.axes = ()
|
||||
self.new_shape = (3, 5)
|
||||
|
||||
|
||||
# Correct: Just part of axes be squeezed.
|
||||
class TestSqueezeOp3(TestSqueezeOp):
|
||||
def init_test_case(self):
|
||||
self.ori_shape = (3, 1, 5, 1, 4, 1)
|
||||
self.axes = (1, -1)
|
||||
self.new_shape = (3, 5, 1, 4)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue