|
|
|
@ -101,7 +101,7 @@ class MNIST(fluid.imperative.Layer):
|
|
|
|
|
class TestImperativeMnist(unittest.TestCase):
|
|
|
|
|
def test_mnist_float32(self):
|
|
|
|
|
seed = 90
|
|
|
|
|
batch_num = 2
|
|
|
|
|
batch_num = 100000
|
|
|
|
|
with fluid.imperative.guard():
|
|
|
|
|
fluid.default_startup_program().random_seed = seed
|
|
|
|
|
fluid.default_main_program().random_seed = seed
|
|
|
|
@ -125,85 +125,109 @@ class TestImperativeMnist(unittest.TestCase):
|
|
|
|
|
label = to_variable(y_data)
|
|
|
|
|
label._stop_gradient = True
|
|
|
|
|
|
|
|
|
|
print("forward start")
|
|
|
|
|
|
|
|
|
|
cost = mnist(img)
|
|
|
|
|
loss = fluid.layers.cross_entropy(cost, label)
|
|
|
|
|
avg_loss = fluid.layers.mean(loss)
|
|
|
|
|
dy_out = avg_loss._numpy()
|
|
|
|
|
# dy_out = avg_loss._numpy()
|
|
|
|
|
print("forward end")
|
|
|
|
|
|
|
|
|
|
if batch_id == 0:
|
|
|
|
|
for param in fluid.default_main_program().global_block(
|
|
|
|
|
).all_parameters():
|
|
|
|
|
dy_param_init_value[param.name] = param._numpy()
|
|
|
|
|
# if batch_id == 0:
|
|
|
|
|
# for param in fluid.default_main_program().global_block(
|
|
|
|
|
# ).all_parameters():
|
|
|
|
|
# dy_param_init_value[param.name] = param._numpy()
|
|
|
|
|
|
|
|
|
|
avg_loss._backward()
|
|
|
|
|
sgd.minimize(avg_loss)
|
|
|
|
|
mnist.clear_gradients()
|
|
|
|
|
dy_param_value = {}
|
|
|
|
|
for param in fluid.default_main_program().global_block(
|
|
|
|
|
).all_parameters():
|
|
|
|
|
dy_param_value[param.name] = param._numpy()
|
|
|
|
|
|
|
|
|
|
with new_program_scope():
|
|
|
|
|
fluid.default_startup_program().random_seed = seed
|
|
|
|
|
fluid.default_main_program().random_seed = seed
|
|
|
|
|
|
|
|
|
|
exe = fluid.Executor(fluid.CPUPlace(
|
|
|
|
|
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
|
|
|
|
|
|
|
|
|
|
mnist = MNIST()
|
|
|
|
|
sgd = SGDOptimizer(learning_rate=1e-3)
|
|
|
|
|
train_reader = paddle.batch(
|
|
|
|
|
paddle.dataset.mnist.train(), batch_size=128)
|
|
|
|
|
|
|
|
|
|
img = fluid.layers.data(
|
|
|
|
|
name='pixel', shape=[1, 28, 28], dtype='float32')
|
|
|
|
|
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
|
|
|
|
cost = mnist(img)
|
|
|
|
|
loss = fluid.layers.cross_entropy(cost, label)
|
|
|
|
|
avg_loss = fluid.layers.mean(loss)
|
|
|
|
|
sgd.minimize(avg_loss)
|
|
|
|
|
|
|
|
|
|
# initialize params and fetch them
|
|
|
|
|
static_param_init_value = {}
|
|
|
|
|
static_param_name_list = []
|
|
|
|
|
for param in fluid.default_startup_program().global_block(
|
|
|
|
|
).all_parameters():
|
|
|
|
|
static_param_name_list.append(param.name)
|
|
|
|
|
print("backward end")
|
|
|
|
|
|
|
|
|
|
out = exe.run(fluid.default_startup_program(),
|
|
|
|
|
fetch_list=static_param_name_list)
|
|
|
|
|
|
|
|
|
|
for i in range(len(static_param_name_list)):
|
|
|
|
|
static_param_init_value[static_param_name_list[i]] = out[i]
|
|
|
|
|
|
|
|
|
|
for batch_id, data in enumerate(train_reader()):
|
|
|
|
|
if batch_id >= batch_num:
|
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
static_x_data = np.array(
|
|
|
|
|
[x[0].reshape(1, 28, 28) for x in data]).astype('float32')
|
|
|
|
|
y_data = np.array([x[1] for x in data]).astype('int64').reshape(
|
|
|
|
|
[128, 1])
|
|
|
|
|
|
|
|
|
|
fetch_list = [avg_loss.name]
|
|
|
|
|
fetch_list.extend(static_param_name_list)
|
|
|
|
|
out = exe.run(fluid.default_main_program(),
|
|
|
|
|
feed={"pixel": static_x_data,
|
|
|
|
|
"label": y_data},
|
|
|
|
|
fetch_list=fetch_list)
|
|
|
|
|
|
|
|
|
|
static_param_value = {}
|
|
|
|
|
static_out = out[0]
|
|
|
|
|
for i in range(1, len(out)):
|
|
|
|
|
static_param_value[static_param_name_list[i - 1]] = out[i]
|
|
|
|
|
sgd.minimize(avg_loss)
|
|
|
|
|
|
|
|
|
|
for key, value in six.iteritems(static_param_init_value):
|
|
|
|
|
self.assertTrue(np.allclose(value, dy_param_init_value[key]))
|
|
|
|
|
print("sgd end")
|
|
|
|
|
|
|
|
|
|
self.assertTrue(np.allclose(static_out, dy_out))
|
|
|
|
|
mnist.clear_gradients()
|
|
|
|
|
|
|
|
|
|
for key, value in six.iteritems(static_param_value):
|
|
|
|
|
self.assertTrue(np.allclose(value, dy_param_value[key]))
|
|
|
|
|
import gc
|
|
|
|
|
for name, var in fluid.default_main_program().global_block().vars.items():
|
|
|
|
|
if not var.persistable:
|
|
|
|
|
fluid.default_main_program().global_block()._remove_var(name)
|
|
|
|
|
# var._ivar._clear_values()
|
|
|
|
|
for op in fluid.default_main_program().global_block().ops:
|
|
|
|
|
fluid.default_main_program().global_block()._remove_op(op.idx)
|
|
|
|
|
|
|
|
|
|
assert len(gc.get_referrers(avg_loss)) == 1
|
|
|
|
|
|
|
|
|
|
print("clear end")
|
|
|
|
|
print("ivar ref ", gc.get_referrers(gc.get_referrers(avg_loss._ivar)[0])[0].__class__.__name__)
|
|
|
|
|
print("ivar ref ", gc.get_referrers(gc.get_referrers(avg_loss._ivar)[1])[0].__class__.__name__)
|
|
|
|
|
|
|
|
|
|
# dy_param_value = {}
|
|
|
|
|
# for param in fluid.default_main_program().global_block(
|
|
|
|
|
# ).all_parameters():
|
|
|
|
|
# dy_param_value[param.name] = param._numpy()
|
|
|
|
|
|
|
|
|
|
# with new_program_scope():
|
|
|
|
|
# fluid.default_startup_program().random_seed = seed
|
|
|
|
|
# fluid.default_main_program().random_seed = seed
|
|
|
|
|
|
|
|
|
|
# exe = fluid.Executor(fluid.CPUPlace(
|
|
|
|
|
# ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
|
|
|
|
|
|
|
|
|
|
# mnist = MNIST()
|
|
|
|
|
# sgd = SGDOptimizer(learning_rate=1e-3)
|
|
|
|
|
# train_reader = paddle.batch(
|
|
|
|
|
# paddle.dataset.mnist.train(), batch_size=128)
|
|
|
|
|
|
|
|
|
|
# img = fluid.layers.data(
|
|
|
|
|
# name='pixel', shape=[1, 28, 28], dtype='float32')
|
|
|
|
|
# label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
|
|
|
|
# cost = mnist(img)
|
|
|
|
|
# loss = fluid.layers.cross_entropy(cost, label)
|
|
|
|
|
# avg_loss = fluid.layers.mean(loss)
|
|
|
|
|
# sgd.minimize(avg_loss)
|
|
|
|
|
|
|
|
|
|
# # initialize params and fetch them
|
|
|
|
|
# static_param_init_value = {}
|
|
|
|
|
# static_param_name_list = []
|
|
|
|
|
# for param in fluid.default_startup_program().global_block(
|
|
|
|
|
# ).all_parameters():
|
|
|
|
|
# static_param_name_list.append(param.name)
|
|
|
|
|
|
|
|
|
|
# out = exe.run(fluid.default_startup_program(),
|
|
|
|
|
# fetch_list=static_param_name_list)
|
|
|
|
|
|
|
|
|
|
# for i in range(len(static_param_name_list)):
|
|
|
|
|
# static_param_init_value[static_param_name_list[i]] = out[i]
|
|
|
|
|
|
|
|
|
|
# for batch_id, data in enumerate(train_reader()):
|
|
|
|
|
# if batch_id >= batch_num:
|
|
|
|
|
# break
|
|
|
|
|
|
|
|
|
|
# static_x_data = np.array(
|
|
|
|
|
# [x[0].reshape(1, 28, 28) for x in data]).astype('float32')
|
|
|
|
|
# y_data = np.array([x[1] for x in data]).astype('int64').reshape(
|
|
|
|
|
# [128, 1])
|
|
|
|
|
|
|
|
|
|
# fetch_list = [avg_loss.name]
|
|
|
|
|
# fetch_list.extend(static_param_name_list)
|
|
|
|
|
# out = exe.run(fluid.default_main_program(),
|
|
|
|
|
# feed={"pixel": static_x_data,
|
|
|
|
|
# "label": y_data},
|
|
|
|
|
# fetch_list=fetch_list)
|
|
|
|
|
|
|
|
|
|
# static_param_value = {}
|
|
|
|
|
# static_out = out[0]
|
|
|
|
|
# for i in range(1, len(out)):
|
|
|
|
|
# static_param_value[static_param_name_list[i - 1]] = out[i]
|
|
|
|
|
|
|
|
|
|
# for key, value in six.iteritems(static_param_init_value):
|
|
|
|
|
# self.assertTrue(np.allclose(value, dy_param_init_value[key]))
|
|
|
|
|
|
|
|
|
|
# self.assertTrue(np.allclose(static_out, dy_out))
|
|
|
|
|
|
|
|
|
|
# for key, value in six.iteritems(static_param_value):
|
|
|
|
|
# self.assertTrue(np.allclose(value, dy_param_value[key]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|