parent
15444430b0
commit
55a7b98126
@ -0,0 +1,196 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
import random
|
||||
import sys
|
||||
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
import paddle.fluid.core as core
|
||||
from test_imperative_base import new_program_scope
|
||||
from paddle.fluid.imperative.base import to_variable
|
||||
|
||||
NUM_USERS = 100
|
||||
NUM_ITEMS = 1000
|
||||
|
||||
BATCH_SIZE = 32
|
||||
NUM_BATCHES = 2
|
||||
|
||||
|
||||
class MLP(fluid.imperative.Layer):
|
||||
def __init__(self, name_scope):
|
||||
super(MLP, self).__init__(name_scope)
|
||||
self._user_latent = fluid.imperative.FC(self.full_name(), 256)
|
||||
self._item_latent = fluid.imperative.FC(self.full_name(), 256)
|
||||
|
||||
self._user_layers = []
|
||||
self._item_layers = []
|
||||
self._hid_sizes = [128, 64]
|
||||
for i in range(len(self._hid_sizes)):
|
||||
self._user_layers.append(
|
||||
self.add_sublayer(
|
||||
'user_layer_%d' % i,
|
||||
fluid.imperative.FC(
|
||||
self.full_name(), self._hid_sizes[i], act='relu')))
|
||||
self._item_layers.append(
|
||||
self.add_sublayer(
|
||||
'item_layer_%d' % i,
|
||||
fluid.imperative.FC(
|
||||
self.full_name(), self._hid_sizes[i], act='relu')))
|
||||
|
||||
def forward(self, users, items):
|
||||
users = self._user_latent(users)
|
||||
items = self._item_latent(items)
|
||||
|
||||
for ul, il in zip(self._user_layers, self._item_layers):
|
||||
users = ul(users)
|
||||
items = il(items)
|
||||
return fluid.layers.elementwise_mul(users, items)
|
||||
|
||||
|
||||
class DMF(fluid.imperative.Layer):
|
||||
def __init__(self, name_scope):
|
||||
super(DMF, self).__init__(name_scope)
|
||||
self._user_latent = fluid.imperative.FC(self.full_name(), 256)
|
||||
self._item_latent = fluid.imperative.FC(self.full_name(), 256)
|
||||
self._match_layers = []
|
||||
self._hid_sizes = [128, 64]
|
||||
for i in range(len(self._hid_sizes)):
|
||||
self._match_layers.append(
|
||||
self.add_sublayer(
|
||||
'match_layer_%d' % i,
|
||||
fluid.imperative.FC(
|
||||
self.full_name(), self._hid_sizes[i], act='relu')))
|
||||
self._mat
|
||||
|
||||
def forward(self, users, items):
|
||||
users = self._user_latent(users)
|
||||
items = self._item_latent(items)
|
||||
match_vec = fluid.layers.concat(
|
||||
[users, items], axis=len(users.shape) - 1)
|
||||
for l in self._match_layers:
|
||||
match_vec = l(match_vec)
|
||||
return match_vec
|
||||
|
||||
|
||||
class DeepCF(fluid.imperative.Layer):
|
||||
def __init__(self, name_scope):
|
||||
super(DeepCF, self).__init__(name_scope)
|
||||
|
||||
self._user_emb = fluid.imperative.Embedding(self.full_name(),
|
||||
[NUM_USERS, 256])
|
||||
self._item_emb = fluid.imperative.Embedding(self.full_name(),
|
||||
[NUM_ITEMS, 256])
|
||||
|
||||
self._mlp = MLP(self.full_name())
|
||||
self._dmf = DMF(self.full_name())
|
||||
self._match_fc = fluid.imperative.FC(self.full_name(), 1, act='sigmoid')
|
||||
|
||||
def forward(self, users, items):
|
||||
users_emb = self._user_emb(users)
|
||||
items_emb = self._item_emb(items)
|
||||
|
||||
mlp_predictive = self._mlp(users_emb, items_emb)
|
||||
dmf_predictive = self._dmf(users_emb, items_emb)
|
||||
predictive = fluid.layers.concat(
|
||||
[mlp_predictive, dmf_predictive],
|
||||
axis=len(mlp_predictive.shape) - 1)
|
||||
prediction = self._match_fc(predictive)
|
||||
return prediction
|
||||
|
||||
|
||||
def get_data():
|
||||
user_ids = []
|
||||
item_ids = []
|
||||
labels = []
|
||||
for uid in range(NUM_USERS):
|
||||
for iid in range(NUM_ITEMS):
|
||||
# 10% positive
|
||||
label = float(random.randint(1, 10) == 1)
|
||||
user_ids.append(uid)
|
||||
item_ids.append(iid)
|
||||
labels.append(label)
|
||||
indices = np.arange(NUM_USERS * NUM_ITEMS)
|
||||
np.random.shuffle(indices)
|
||||
users_np = np.array(user_ids, dtype=np.int64)[indices]
|
||||
items_np = np.array(item_ids, dtype=np.int64)[indices]
|
||||
labels_np = np.array(labels, dtype=np.float32)[indices]
|
||||
return np.expand_dims(users_np, -1), \
|
||||
np.expand_dims(items_np, -1), \
|
||||
np.expand_dims(labels_np, -1)
|
||||
|
||||
|
||||
class TestImperativeDeepCF(unittest.TestCase):
|
||||
def test_gan_float32(self):
|
||||
seed = 90
|
||||
users_np, items_np, labels_np = get_data()
|
||||
|
||||
startup = fluid.Program()
|
||||
startup.random_seed = seed
|
||||
main = fluid.Program()
|
||||
main.random_seed = seed
|
||||
|
||||
scope = fluid.core.Scope()
|
||||
with new_program_scope(main=main, startup=startup, scope=scope):
|
||||
users = fluid.layers.data('users', [1], dtype='int64')
|
||||
items = fluid.layers.data('items', [1], dtype='int64')
|
||||
labels = fluid.layers.data('labels', [1], dtype='float32')
|
||||
|
||||
deepcf = DeepCF('deepcf')
|
||||
prediction = deepcf(users, items)
|
||||
loss = fluid.layers.reduce_sum(
|
||||
fluid.layers.log_loss(prediction, labels))
|
||||
adam = fluid.optimizer.AdamOptimizer(0.01)
|
||||
adam.minimize(loss)
|
||||
|
||||
exe = fluid.Executor(fluid.CPUPlace(
|
||||
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
|
||||
exe.run(startup)
|
||||
for slice in range(0, BATCH_SIZE * NUM_BATCHES, BATCH_SIZE):
|
||||
static_loss = exe.run(
|
||||
main,
|
||||
feed={
|
||||
users.name: users_np[slice:slice + BATCH_SIZE],
|
||||
items.name: items_np[slice:slice + BATCH_SIZE],
|
||||
labels.name: labels_np[slice:slice + BATCH_SIZE]
|
||||
},
|
||||
fetch_list=[loss])[0]
|
||||
sys.stderr.write('static loss %s\n' % static_loss)
|
||||
|
||||
with fluid.imperative.guard():
|
||||
fluid.default_startup_program().random_seed = seed
|
||||
fluid.default_main_program().random_seed = seed
|
||||
|
||||
deepcf = DeepCF('deepcf')
|
||||
for slice in range(0, BATCH_SIZE * NUM_BATCHES, BATCH_SIZE):
|
||||
prediction = deepcf(
|
||||
to_variable(users_np[slice:slice + BATCH_SIZE]),
|
||||
to_variable(items_np[slice:slice + BATCH_SIZE]))
|
||||
loss = fluid.layers.reduce_sum(
|
||||
fluid.layers.log_loss(prediction,
|
||||
to_variable(labels_np[slice:slice +
|
||||
BATCH_SIZE])))
|
||||
loss._backward()
|
||||
adam = fluid.optimizer.AdamOptimizer(0.01)
|
||||
adam.minimize(loss)
|
||||
deepcf.clear_gradients()
|
||||
dy_loss = loss._numpy()
|
||||
|
||||
self.assertEqual(static_loss, dy_loss)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue