Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into improve_pruning

gangliao-patch-1
zlx 8 years ago
commit 561c4562cf

@ -1,3 +1,4 @@
group: deprecated-2017Q2
language: cpp
cache:
directories:

@ -99,3 +99,12 @@ value_printer
.. automodule:: paddle.v2.evaluator
:members: value_printer
:noindex:
Detection
=====
detection_map
-------------
.. automodule:: paddle.v2.evaluator
:members: detection_map
:noindex:

@ -5,18 +5,35 @@ import (
"net/http"
"net/rpc"
"strconv"
"time"
"github.com/namsral/flag"
"github.com/PaddlePaddle/Paddle/go/pserver"
log "github.com/sirupsen/logrus"
)
func main() {
port := flag.Int("port", 0, "port of the pserver")
etcdEndpoint := flag.String("etcd-endpoint", "http://127.0.0.1:2379",
"comma separated endpoint string for pserver to connect to etcd")
etcdTimeout := flag.Int("etcd-timeout", 5, "timeout for etcd calls")
logLevel := flag.String("log-level", "info",
"log level, possible values: debug, info, warning, error, fatal, panic")
flag.Parse()
s := pserver.NewService()
err := rpc.Register(s)
level, err := log.ParseLevel(*logLevel)
if err != nil {
panic(err)
}
log.SetLevel(level)
timeout := time.Second * time.Duration((*etcdTimeout))
s, err := pserver.NewService(*etcdEndpoint, timeout)
if err != nil {
panic(err)
}
err = rpc.Register(s)
if err != nil {
panic(err)
}
@ -27,7 +44,9 @@ func main() {
panic(err)
}
log.Infof("start pserver at port %d", *port)
err = http.Serve(l, nil)
if err != nil {
panic(err)
}

@ -7,6 +7,7 @@ import (
"strconv"
"strings"
"testing"
"time"
"github.com/PaddlePaddle/Paddle/go/pserver"
)
@ -30,9 +31,12 @@ func init() {
port[i] = p
go func(l net.Listener) {
s := pserver.NewService()
s, err := pserver.NewService("", time.Second*5)
if err != nil {
panic(err)
}
server := rpc.NewServer()
err := server.Register(s)
err = server.Register(s)
if err != nil {
panic(err)
}

@ -1,9 +1,18 @@
package pserver
import (
"context"
"errors"
"fmt"
"strconv"
"strings"
"sync"
"time"
"github.com/PaddlePaddle/Paddle/go/utils/networkhelper"
"github.com/coreos/etcd/clientv3"
"github.com/coreos/etcd/clientv3/concurrency"
log "github.com/sirupsen/logrus"
)
// ElementType is the type of elements of a Parameter.
@ -24,6 +33,9 @@ const (
Float64
)
// PsDesired is etcd path for store desired pserver count
const PsDesired = "/ps_desired"
// Parameter is a piece of data to sync with the parameter server.
type Parameter struct {
Name string
@ -47,14 +59,121 @@ type Service struct {
mu sync.Mutex
opt *optimizer
paramMap map[string]Parameter
etcdEndpoints string
etcdClient *clientv3.Client
// etcdTimeout is also used as retry intervals.
etcdTimeout time.Duration
// desired number of pservers in the job.
// assume desired will not change during one training job.
desired int
// FIXME: ensure GetExternalIP gets the correct ip for trainers to connect.
externalIP string
}
// NewService creates a new service.
func NewService() *Service {
// NewService creates a new service, will bypass etcd registration if no
// endpoints specified.
func NewService(endpoints string, timeout time.Duration) (*Service, error) {
s := &Service{opt: newOptimizer(sgd, 0.005)}
s.paramMap = make(map[string]Parameter)
s.initialized = make(chan struct{})
return s
s.etcdEndpoints = endpoints
s.etcdTimeout = timeout
var err error
s.externalIP, err = networkhelper.GetExternalIP()
if err != nil {
return nil, err
}
if endpoints != "" {
// initialize connection to etcd, try
ep := strings.Split(s.etcdEndpoints, ",")
for {
cli, err := clientv3.New(clientv3.Config{
Endpoints: ep,
DialTimeout: s.etcdTimeout,
})
if err != nil {
log.Errorf("connect to etcd error: %v", err)
time.Sleep(s.etcdTimeout)
continue
}
s.etcdClient = cli
log.Debugf("inited client to %s", s.etcdEndpoints)
break
}
// wait and set s.desired init value
for {
ctx, cancel := context.WithTimeout(context.Background(), time.Second)
resp, err := s.etcdClient.Get(ctx, PsDesired)
cancel()
if err != nil {
log.Errorf("getting %s error: %v", PsDesired, err)
time.Sleep(s.etcdTimeout)
continue
}
if len(resp.Kvs) != 0 {
s.desired, err = strconv.Atoi(string(resp.Kvs[0].Value))
if err != nil {
log.Errorf("value of %s invalid %v\n", PsDesired, err)
time.Sleep(s.etcdTimeout)
// NOTE: wait util ps_desired value change
continue
}
break
}
}
// try register pserver node on etcd
for {
ctx, cancel := context.WithTimeout(context.Background(), time.Second)
_, err := s.registerPserverEtcd(ctx)
cancel()
if err != nil {
log.Warn(err)
time.Sleep(s.etcdTimeout)
continue
}
break
}
} // if endpoints != ""
// Bypass etcd registration if no endpoints specified
return s, nil
}
// registerPserverEtcd registers pserver node on etcd using transaction.
func (s *Service) registerPserverEtcd(ctx context.Context) (*clientv3.TxnResponse, error) {
return concurrency.NewSTM(s.etcdClient, func(c concurrency.STM) error {
registered := false
for i := 0; i < s.desired; i++ {
psKey := "/ps/" + strconv.Itoa(i)
log.Debugf("checking %s", psKey)
ps := c.Get(psKey)
log.Debugf("got value (%s) for key: %s", ps, psKey)
if ps == "" {
resp, err := s.etcdClient.Grant(context.TODO(), 5)
if err != nil {
log.Fatal(err)
}
// find the first id and write info
c.Put(psKey, s.externalIP, clientv3.WithLease(resp.ID))
log.Debugf("set pserver node %s with value %s", psKey, s.externalIP)
_, kaerr := s.etcdClient.KeepAlive(context.TODO(), resp.ID)
if kaerr != nil {
log.Errorf("keepalive etcd node error: %v", kaerr)
return kaerr
}
log.Debug("register finished")
registered = true
break
}
}
if registered == true {
return nil
}
return errors.New("not registerd, may due to already have enough pservers")
}, concurrency.WithAbortContext(ctx), concurrency.WithIsolation(concurrency.RepeatableReads))
}
// InitParam initializes a parameter.

@ -10,12 +10,15 @@ import (
)
func TestFull(t *testing.T) {
s := pserver.NewService()
s, err := pserver.NewService("", time.Second*5)
if err != nil {
t.Error(err)
}
var p pserver.Parameter
p.Name = "param_a"
p.Content = []byte{1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0}
p.ElementType = pserver.Int32
err := s.InitParam(pserver.ParameterWithConfig{Param: p, Config: nil}, nil)
err = s.InitParam(pserver.ParameterWithConfig{Param: p, Config: nil}, nil)
if err != nil {
t.FailNow()
}
@ -72,8 +75,11 @@ func TestFull(t *testing.T) {
}
func TestMultipleInit(t *testing.T) {
s := pserver.NewService()
err := s.FinishInitParams(0, nil)
s, err := pserver.NewService("", time.Second*5)
if err != nil {
t.Error(err)
}
err = s.FinishInitParams(0, nil)
if err != nil {
t.FailNow()
}
@ -85,15 +91,18 @@ func TestMultipleInit(t *testing.T) {
}
func TestUninitialized(t *testing.T) {
s := pserver.NewService()
err := s.SendGrad(pserver.Gradient{}, nil)
s, err := pserver.NewService("", time.Second*5)
err = s.SendGrad(pserver.Gradient{}, nil)
if err.Error() != pserver.Uninitialized {
t.FailNow()
}
}
func TestBlockUntilInitialized(t *testing.T) {
s := pserver.NewService()
s, err := pserver.NewService("", time.Second*5)
if err != nil {
t.Error(err)
}
ch := make(chan struct{}, 2)
errCh := make(chan error, 2)
var wg sync.WaitGroup
@ -133,7 +142,7 @@ func TestBlockUntilInitialized(t *testing.T) {
p.Name = "param_a"
p.Content = []byte{1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0}
p.ElementType = pserver.Int32
err := s.InitParam(pserver.ParameterWithConfig{Param: p, Config: nil}, nil)
err = s.InitParam(pserver.ParameterWithConfig{Param: p, Config: nil}, nil)
if err != nil {
t.FailNow()
}

@ -0,0 +1,45 @@
package networkhelper
import (
"errors"
"net"
)
// GetExternalIP returns the ip address of local network interface, not the
// loopback device.
func GetExternalIP() (string, error) {
ifaces, err := net.Interfaces()
if err != nil {
return "", err
}
for _, iface := range ifaces {
if iface.Flags&net.FlagUp == 0 {
continue // interface down
}
if iface.Flags&net.FlagLoopback != 0 {
continue // loopback interface
}
addrs, err := iface.Addrs()
if err != nil {
return "", err
}
for _, addr := range addrs {
var ip net.IP
switch v := addr.(type) {
case *net.IPNet:
ip = v.IP
case *net.IPAddr:
ip = v.IP
}
if ip == nil || ip.IsLoopback() {
continue
}
ip = ip.To4()
if ip == nil {
continue // not an ipv4 address
}
return ip.String(), nil
}
}
return "", errors.New("are you connected to the network?")
}

@ -0,0 +1,10 @@
package networkhelper
import "testing"
func TestGetIP(t *testing.T) {
_, err := GetExternalIP()
if err != nil {
t.Errorf("GetExternalIP returns error : %v\n", err)
}
}

File diff suppressed because it is too large Load Diff

@ -241,11 +241,14 @@ void NeuralNetwork::forward(const std::vector<Argument>& inArgs,
dataLayers_[i]->setData(inArgs[i]);
}
gLayerStackTrace.set_stage(true);
{
for (auto& layer : layers_) {
REGISTER_TIMER_INFO("ForwardTimer", layer->getName().c_str());
gLayerStackTrace.push(layer->getName());
layer->forward(passType);
gLayerStackTrace.pop(layer->getName());
}
}
@ -254,9 +257,6 @@ void NeuralNetwork::forward(const std::vector<Argument>& inArgs,
for (auto& layer : outputLayers_) {
outArgs->push_back(layer->getOutput());
}
if (passType == PASS_TEST) {
gLayerStackTrace.clear();
}
}
void NeuralNetwork::resetState() {
@ -283,9 +283,10 @@ void NeuralNetwork::getState(MachineState& machineState) {
}
void NeuralNetwork::backward(const UpdateCallback& callback) {
gLayerStackTrace.pop(""); // tell layer trace is during backward.
gLayerStackTrace.set_stage(false);
FOR_EACH_R(layer, layers_) {
REGISTER_TIMER_INFO("BackwardTimer", (*layer)->getName().c_str());
gLayerStackTrace.push((*layer)->getName());
if ((*layer)->needGradient()) {
(*layer)->backward(callback);
}
@ -320,7 +321,7 @@ public:
}
}
virtual void eval(const NeuralNetwork& nn) {
virtual void eval(const NeuralNetwork& nn) override {
for (auto& evaluator : evaluators_) {
evaluator->eval(nn);
}
@ -395,6 +396,30 @@ private:
}
};
class SubnetEvaluator : public CombinedEvaluator {
public:
SubnetEvaluator(const std::string& layerName,
std::unique_ptr<Evaluator>&& evaluator)
: layerName_(layerName) {
addEvaluator(std::move(evaluator));
}
virtual void eval(const NeuralNetwork& nn) override {
const LayerPtr& layer = nn.getLayer(layerName_);
CHECK(layer) << "Nonexisted layer: " << layerName_ << " in submodel "
<< nn.getName();
bool accessed = false;
layer->accessSubNetwork([this, &accessed](NeuralNetwork& subnet) {
subnet.eval(evaluators_[0].get());
accessed = true;
});
CHECK(accessed) << "There is no subnetwork for layer " << layerName_
<< " in submodel " << nn.getName();
}
protected:
std::string layerName_;
};
Evaluator* NeuralNetwork::makeEvaluator() const {
CombinedEvaluator* combinedEvaluator = new CombinedEvaluator();
auto subModelConfig = std::find_if(config_.sub_models().begin(),
@ -421,6 +446,15 @@ Evaluator* NeuralNetwork::makeEvaluator() const {
combinedEvaluator->addEvaluator(std::move(evaluator));
}
}
for (auto& layer : layers_) {
layer->accessSubNetwork(
[layer, combinedEvaluator](NeuralNetwork& subnet) {
std::unique_ptr<Evaluator> subEvaluator(new SubnetEvaluator(
layer->getName(),
std::unique_ptr<Evaluator>(subnet.makeEvaluator())));
combinedEvaluator->addEvaluator(std::move(subEvaluator));
});
}
} else {
for (const EvaluatorConfig& evalConfig : config_.evaluators()) {
std::unique_ptr<Evaluator> evaluator(Evaluator::create(evalConfig));

@ -129,6 +129,8 @@ public:
static NeuralNetwork* newNeuralNetwork(const std::string& name = "",
NeuralNetwork* rootNetwork = nullptr);
const std::string& getName() const { return subModelName_; }
protected:
/**
* The constructor of NeuralNetwork.

@ -208,6 +208,7 @@ void RecurrentGradientMachine::init(
});
CHECK(subModelConfig != config.sub_models().end());
reversed_ = subModelConfig->reversed();
generating_ = subModelConfig->has_generator();
inFrameLines_.resize(subModelConfig->in_links_size());
for (size_t i = 0; i < inFrameLines_.size(); ++i) {
@ -287,10 +288,6 @@ void RecurrentGradientMachine::init(
parameterIds_.push_back(para->getID());
}
}
if (subModelConfig->evaluator_names_size() > 0) {
evaluator_.reset(frames_[0]->makeEvaluator());
}
}
void RecurrentGradientMachine::resizeOrCreateFrames(int numFrames) {
@ -538,7 +535,7 @@ void RecurrentGradientMachine::forward(const std::vector<Argument>& inArgs,
The outputs are outFramesLines_[i].agentLayer
*/
if (inFrameLines_.empty() && passType == PASS_TEST) {
if (generating_) {
generateSequence();
return;
} // else forward..
@ -561,14 +558,14 @@ void RecurrentGradientMachine::forward(const std::vector<Argument>& inArgs,
std::vector<Argument> outArgs;
frames_[i]->forward(inArgs, &outArgs, passType);
}
if (evaluator_ && passType == PASS_TEST) {
this->eval(evaluator_.get());
}
reorganizeOutput(passType);
}
void RecurrentGradientMachine::backward(const UpdateCallback& callback) {
if (generating_) {
return;
}
REGISTER_TIMER_INFO("RecurrentBwTime", "RecurrentBwTime");
AsyncGpuBlock asyncGpuBlock;
for (int i = maxSequenceLength_ - 1; i >= 0; --i) {
@ -577,11 +574,6 @@ void RecurrentGradientMachine::backward(const UpdateCallback& callback) {
for (auto& memoryFrameLine : memoryFrameLines_) {
memoryFrameLine.bootLayer->backward(nullptr);
}
// call printers here so the gradient can be printed
if (evaluator_) {
this->eval(evaluator_.get());
}
}
void RecurrentGradientMachine::forwardBackward(
@ -595,9 +587,9 @@ void RecurrentGradientMachine::forwardBackward(
void RecurrentGradientMachine::eval(Evaluator* evaluator) const {
// call printers frame by frame
for (int i = 0; i < maxSequenceLength_; ++i) {
LOG(INFO) << "Recurrent Layer Group eval frame " << i << " begin";
VLOG(2) << "Recurrent Layer Group eval frame " << i << " begin";
evaluator->eval(*(frames_[i].get()));
LOG(INFO) << "Recurrent Layer Group eval frame " << i << " end";
VLOG(2) << "Recurrent Layer Group eval frame " << i << " end";
}
}
@ -1093,10 +1085,6 @@ void RecurrentGradientMachine::oneWaySearch(size_t batchSize) {
copyDataOutlinkFrame(machineCur);
// call value printer
if (evaluator_) {
evaluator_->eval(*(frames_[machineCur].get()));
}
// check eos
const IVectorPtr& eosVec =
eosFrameLine_->layers[machineCur]->getOutput().ids;
@ -1321,11 +1309,10 @@ void RecurrentGradientMachine::fillGenOutputs() {
batchMachineIdVec_.clear();
generator_.ids.clear();
int* starts = generator_.outArg.sequenceStartPositions->getMutableData(false);
starts[0] = 0;
if (numResults > 1) {
real* probs = generator_.outArg.in->getData();
int* starts =
generator_.outArg.sequenceStartPositions->getMutableData(false);
starts[0] = 0;
for (size_t i = 0; i < finalPaths_.size(); ++i) {
for (size_t j = 0; j < finalPaths_[i].size(); ++j) {
Path& path = finalPaths_[i][j];
@ -1348,7 +1335,10 @@ void RecurrentGradientMachine::fillGenOutputs() {
} else {
for (size_t i = 0; i < finalPaths_.size(); ++i) {
CHECK(!finalPaths_[i].empty());
generator_.ids = finalPaths_[i][0].ids;
generator_.ids.insert(generator_.ids.begin(),
finalPaths_[i][0].ids.begin(),
finalPaths_[i][0].ids.end());
starts[i + 1] = starts[i] + finalPaths_[i][0].ids.size();
}
}
}

@ -414,6 +414,7 @@ protected:
std::vector<int> ids; // store generated sequences
Argument outArg; // final output argument
};
bool generating_;
Generator generator_;
std::vector<std::unique_ptr<NeuralNetwork>> frames_;
@ -428,8 +429,6 @@ protected:
std::vector<int>
parameterIds_; // parameters actually used by this Layer Group
std::unique_ptr<Evaluator> evaluator_; // frame printers in this layer group
// store final argument of outFrameLines_
std::vector<Argument> dataArgs_;
// store each frame's output argument of outFrameLines_

@ -109,6 +109,40 @@ void GatherAgentLayer::forwardValue(PassType passType) {
}
}
namespace {
// dest[index[i]] <- src[i] for each i
void copyElements(const IVector& srcVec,
const IVector& indexVec,
IVector& destVec) {
const int* src = srcVec.getData();
const int* index = indexVec.getData();
int* dest = destVec.getData();
int len = indexVec.getSize();
CHECK_EQ(srcVec.getSize(), indexVec.getSize());
for (int i = 0; i < len; ++i) {
dest[index[i]] = src[i];
}
}
}
void GatherAgentLayer::forwardIds(PassType passType) {
IVectorPtr realId = realLayers_[0]->getOutputLabel();
if (!realId) return;
IVector::resizeOrCreate(output_.ids, allIds_->getSize(), useGpu_);
IVectorPtr outId = output_.ids;
idsVec_.resize(idIndex_.size());
for (size_t i = 0; i < realLayers_.size(); ++i) {
const IVectorPtr& realId = realLayers_[i]->getOutputLabel();
idsVec_[i] = IVector::create(allIds_->getData() + idIndex_[i],
/* size */ realId->getSize(),
useGpu_);
execViaCpu(&copyElements, *realId, *idsVec_[i], *outId);
}
}
void GatherAgentLayer::backward(const UpdateCallback& callback) {
(void)callback;
const MatrixPtr& outputGrad = getOutputGrad();
@ -136,23 +170,22 @@ void ScatterAgentLayer::forward(PassType passType) {
CHECK_EQ(realLayer_->getDeviceId(), this->getDeviceId());
int width = this->getSize();
if (realOutArg_.hasSeq()) {
forwardSequence(passType);
} else if (realOutArg_.value || realOutArg_.ids) {
output_.subArgFrom(
realOutArg_, /* offset */ idIndex_, idSize_, width, useGpu_);
} else { // used in generation
if (realLayer_->getOutput().ids) {
IVector::resizeOrCreate(output_.ids, ids_->getSize(), useGpu_);
output_.ids->selectFrom(*realLayer_->getOutput().ids, *ids_);
}
if (realLayer_->getOutput().value) {
int height = ids_->getSize();
resetOutput(height, width);
const MatrixPtr& outV = getOutputValue();
const MatrixPtr& realV = realLayer_->getOutputValue();
outV->selectRows(*realV, *ids_);
if (selectionMode_) {
forwardWithSelection(passType);
} else {
if (realOutArg_.hasSeq()) {
output_.subArgFrom(realOutArg_,
/* offset */ idIndex_,
idSize_,
width,
useGpu_,
/* trans */ false,
/* seqFlag */ true,
/* seqStart */ seqStartPosIndex_,
/* seqSize */ numSequences_);
} else {
output_.subArgFrom(
realOutArg_, /* offset */ idIndex_, idSize_, width, useGpu_);
}
}
}
@ -160,6 +193,8 @@ void ScatterAgentLayer::forward(PassType passType) {
void ScatterAgentLayer::backward(const UpdateCallback& callback) {
(void)callback;
CHECK(!selectionMode_);
const MatrixPtr& outputGrad = realOutArg_.grad;
const MatrixPtr& realGrad = realLayer_->getOutputGrad();
if (realGrad) {
@ -174,42 +209,7 @@ void ScatterAgentLayer::backward(const UpdateCallback& callback) {
REGISTER_LAYER(gather_agent, GatherAgentLayer);
REGISTER_LAYER(scatter_agent, ScatterAgentLayer);
void GatherAgentLayer::forwardIds(PassType passType) {
int height = 0;
IVectorPtr idReal = realLayers_[0]->getOutputLabel();
if (!idReal) return;
if (output_.subSequenceStartPositions) {
int* starts = output_.subSequenceStartPositions->getMutableData(false);
// Gather generator.idsVec
// if is beam search generation result. Get first result.
if (idReal->getData()[idReal->getSize() - 1] == -1) {
for (size_t i = 0; i < realLayers_.size(); ++i) {
// The first element stores first result size
idReal = realLayers_[i]->getOutputLabel();
idReal->subVecFrom(*idReal, 1, idReal->getData()[0]);
}
}
for (size_t i = 0; i < realLayers_.size(); ++i) {
CHECK(realLayers_[i]->getOutputLabel());
starts[i] = height;
height += realLayers_[i]->getOutputLabel()->getSize();
}
starts[realLayers_.size()] = height;
output_.sequenceStartPositions->getMutableData(false)[1] = height;
IVector::resizeOrCreate(output_.ids, height, false);
for (size_t i = 0; i < realLayers_.size(); ++i) {
output_.ids->subVec(starts[i], starts[i + 1] - starts[i])
->copyFrom(*realLayers_[i]->getOutputLabel());
}
} else {
LOG(FATAL) << "Not implemented";
}
}
void ScatterAgentLayer::forwardSequence(PassType passType) {
void ScatterAgentLayer::forwardWithSelection(PassType passType) {
Layer::forward(passType);
CHECK_EQ(realLayer_->getDeviceId(), this->getDeviceId());
@ -220,17 +220,19 @@ void ScatterAgentLayer::forwardSequence(PassType passType) {
AsyncGpuBlock asyncGpuBlock;
REGISTER_TIMER_INFO("SequenceAgentLayerForward", getName().c_str());
if (realOutArg_.value || realOutArg_.ids) {
CHECK(realOutArg_.sequenceStartPositions);
output_.subArgFrom(realOutArg_,
/* offset */ idIndex_,
idSize_,
width,
useGpu_,
/* trans */ false,
/* seqFlag */ true,
/* seqStart */ seqStartPosIndex_,
/* seqSize */ numSequences_);
if (!input.hasSeq()) {
if (realLayer_->getOutput().ids) {
IVector::resizeOrCreate(output_.ids, ids_->getSize(), useGpu_);
output_.ids->selectFrom(*realLayer_->getOutput().ids, *ids_);
}
if (realLayer_->getOutput().value) {
int height = ids_->getSize();
resetOutput(height, width);
const MatrixPtr& outV = getOutputValue();
const MatrixPtr& realV = realLayer_->getOutputValue();
outV->selectRows(*realV, *ids_);
}
} else {
// Putting the generation logic here is really an ugly hack!
// used in generation

@ -110,6 +110,9 @@ protected:
// of real layer.
ICpuGpuVectorPtr inputStartPos_;
// true for setRealLayer, false for setRealLayerAndOutput
bool selectionMode_;
public:
explicit ScatterAgentLayer(const LayerConfig& config) : Layer(config) {}
@ -137,6 +140,7 @@ public:
} else {
cpuIds_ = ids_;
}
selectionMode_ = true;
}
// set real layer and output, [idIndex, idIndex + idSize) of *ids*
@ -153,6 +157,7 @@ public:
idIndex_ = idIndex;
idSize_ = idSize;
handleBackward_ = handleBackward;
selectionMode_ = false;
}
void setSequenceStartPositions(const ICpuGpuVectorPtr& sequenceStartPositions,
@ -166,7 +171,7 @@ public:
void forward(PassType passType) override;
void backward(const UpdateCallback& callback) override;
void forwardSequence(PassType passType);
void forwardWithSelection(PassType passType);
};
} // namespace paddle

@ -138,6 +138,23 @@ void testEvaluatorAll(TestConfig testConf,
testEvaluator(testConf, testEvaluatorName, batchSize, false);
}
TEST(Evaluator, detection_map) {
TestConfig config;
config.evaluatorConfig.set_type("detection_map");
config.evaluatorConfig.set_overlap_threshold(0.5);
config.evaluatorConfig.set_background_id(0);
config.evaluatorConfig.set_ap_type("Integral");
config.evaluatorConfig.set_evaluate_difficult(0);
config.inputDefs.push_back({INPUT_DATA, "output", 7});
config.inputDefs.push_back({INPUT_SEQUENCE_DATA, "label", 6});
config.evaluatorConfig.set_evaluate_difficult(false);
testEvaluatorAll(config, "detection_map", 100);
config.evaluatorConfig.set_evaluate_difficult(true);
testEvaluatorAll(config, "detection_map", 100);
}
TEST(Evaluator, classification_error) {
TestConfig config;
config.evaluatorConfig.set_type("classification_error");

@ -35,7 +35,7 @@ def outer_step(dummy_data):
embedding_size=num_words)]
def inner_step(dummy_memory, predict_word):
# simplified RNN for testing
with mixed_layer(size=num_words) as layer:
layer += full_matrix_projection(input=predict_word,
@ -46,15 +46,15 @@ def outer_step(dummy_data):
param_attr=ParamAttr(name="wordvec"))
return out
beam_gen = beam_search(name="rnn_gen",
step=inner_step,
input=gen_inputs,
bos_id=0,
eos_id=num_words-1,
beam_size=2 if beam_flag else 1,
num_results_per_sample=2 if beam_flag else 1,
max_length=10)
num_results_per_sample=1,
max_length=10)
return beam_gen
beam_gen_concat = recurrent_group(name="rnn_gen_concat",

@ -33,7 +33,7 @@ gen_inputs = [StaticInput(input=dummy_data, size=2),
embedding_size=num_words)]
def step(dummy_memory, predict_word):
# simplified RNN for testing
with mixed_layer(size=num_words) as layer:
layer += full_matrix_projection(input=predict_word,
@ -44,7 +44,7 @@ def step(dummy_memory, predict_word):
param_attr=ParamAttr(name="wordvec"))
return out
beam_gen = beam_search(name="rnn_gen",
step=step,
input=gen_inputs,
@ -52,7 +52,7 @@ beam_gen = beam_search(name="rnn_gen",
eos_id=num_words-1,
beam_size=2 if beam_flag else 1,
num_results_per_sample=2 if beam_flag else 1,
max_length=10)
max_length=10)
seqtext_printer_evaluator(input=beam_gen,
id_input=sent_id,

@ -55,13 +55,17 @@ public:
* Else, just set status to popping.
*/
void pop(const T& item) {
pushing() = false;
auto& s = this->stack();
if (item == s.top()) {
s.pop();
}
}
/**
* @brief Indicate whether we are at forward or backward stage of computation
*/
void set_stage(bool isForward) { pushing() = isForward; }
/**
* @brief clear current thread stack.
*/

@ -72,7 +72,6 @@ TEST(CustomStackTrace, normalTrain) {
for (size_t i = 0; i < layerSize; ++i) {
tracer.push("layer_" + paddle::str::to_string(i));
}
tracer.pop("");
for (size_t i = 0; i < layerSize; ++i) {
tracer.pop("layer_" + paddle::str::to_string(layerSize - 1 - i));
}

@ -489,6 +489,15 @@ message EvaluatorConfig {
// Used by ClassificationErrorEvaluator
// top # classification error
optional int32 top_k = 13 [default = 1];
// Used by DetectionMAPEvaluator
optional double overlap_threshold = 14 [default = 0.5];
optional int32 background_id = 15 [default = 0];
optional bool evaluate_difficult = 16 [default = false];
optional string ap_type = 17 [default = "11point"];
}
message LinkConfig {

@ -1280,20 +1280,23 @@ def parse_maxout(maxout, input_layer_name, maxout_conf):
# Define an evaluator
@config_func
def Evaluator(
name,
type,
inputs,
chunk_scheme=None,
num_chunk_types=None,
classification_threshold=None,
positive_label=None,
dict_file=None,
result_file=None,
num_results=None,
top_k=None,
delimited=None,
excluded_chunk_types=None, ):
def Evaluator(name,
type,
inputs,
chunk_scheme=None,
num_chunk_types=None,
classification_threshold=None,
positive_label=None,
dict_file=None,
result_file=None,
num_results=None,
top_k=None,
delimited=None,
excluded_chunk_types=None,
overlap_threshold=None,
background_id=None,
evaluate_difficult=None,
ap_type=None):
evaluator = g_config.model_config.evaluators.add()
evaluator.type = type
evaluator.name = MakeLayerNameInSubmodel(name)
@ -1327,6 +1330,18 @@ def Evaluator(
if excluded_chunk_types:
evaluator.excluded_chunk_types.extend(excluded_chunk_types)
if overlap_threshold is not None:
evaluator.overlap_threshold = overlap_threshold
if background_id is not None:
evaluator.background_id = background_id
if evaluate_difficult is not None:
evaluator.evaluate_difficult = evaluate_difficult
if ap_type is not None:
evaluator.ap_type = ap_type
class LayerBase(object):
def __init__(

@ -21,7 +21,8 @@ __all__ = [
"chunk_evaluator", "sum_evaluator", "column_sum_evaluator",
"value_printer_evaluator", "gradient_printer_evaluator",
"maxid_printer_evaluator", "maxframe_printer_evaluator",
"seqtext_printer_evaluator", "classification_error_printer_evaluator"
"seqtext_printer_evaluator", "classification_error_printer_evaluator",
"detection_map_evaluator"
]
@ -31,10 +32,11 @@ class EvaluatorAttribute(object):
FOR_RANK = 1 << 2
FOR_PRINT = 1 << 3
FOR_UTILS = 1 << 4
FOR_DETECTION = 1 << 5
KEYS = [
"for_classification", "for_regression", "for_rank", "for_print",
"for_utils"
"for_utils", "for_detection"
]
@staticmethod
@ -57,22 +59,25 @@ def evaluator(*attrs):
return impl
def evaluator_base(
input,
type,
label=None,
weight=None,
name=None,
chunk_scheme=None,
num_chunk_types=None,
classification_threshold=None,
positive_label=None,
dict_file=None,
result_file=None,
num_results=None,
delimited=None,
top_k=None,
excluded_chunk_types=None, ):
def evaluator_base(input,
type,
label=None,
weight=None,
name=None,
chunk_scheme=None,
num_chunk_types=None,
classification_threshold=None,
positive_label=None,
dict_file=None,
result_file=None,
num_results=None,
delimited=None,
top_k=None,
excluded_chunk_types=None,
overlap_threshold=None,
background_id=None,
evaluate_difficult=None,
ap_type=None):
"""
Evaluator will evaluate the network status while training/testing.
@ -107,6 +112,14 @@ def evaluator_base(
:type weight: LayerOutput.
:param top_k: number k in top-k error rate
:type top_k: int
:param overlap_threshold: In detection tasks to filter detection results
:type overlap_threshold: float
:param background_id: Identifier of background class
:type background_id: int
:param evaluate_difficult: Whether to evaluate difficult objects
:type evaluate_difficult: bool
:param ap_type: How to calculate average persicion
:type ap_type: str
"""
# inputs type assertions.
assert classification_threshold is None or isinstance(
@ -136,7 +149,61 @@ def evaluator_base(
delimited=delimited,
num_results=num_results,
top_k=top_k,
excluded_chunk_types=excluded_chunk_types, )
excluded_chunk_types=excluded_chunk_types,
overlap_threshold=overlap_threshold,
background_id=background_id,
evaluate_difficult=evaluate_difficult,
ap_type=ap_type)
@evaluator(EvaluatorAttribute.FOR_DETECTION)
@wrap_name_default()
def detection_map_evaluator(input,
label,
overlap_threshold=0.5,
background_id=0,
evaluate_difficult=False,
ap_type="11point",
name=None):
"""
Detection mAP Evaluator. It will print mean Average Precision (mAP) for detection.
The detection mAP Evaluator based on the output of detection_output layer counts
the true positive and the false positive bbox and integral them to get the
mAP.
The simple usage is:
.. code-block:: python
eval = detection_map_evaluator(input=det_output,label=lbl)
:param input: Input layer.
:type input: LayerOutput
:param label: Label layer.
:type label: LayerOutput
:param overlap_threshold: The bbox overlap threshold of a true positive.
:type overlap_threshold: float
:param background_id: The background class index.
:type background_id: int
:param evaluate_difficult: Whether evaluate a difficult ground truth.
:type evaluate_difficult: bool
"""
if not isinstance(input, list):
input = [input]
if label:
input.append(label)
evaluator_base(
name=name,
type="detection_map",
input=input,
label=label,
overlap_threshold=overlap_threshold,
background_id=background_id,
evaluate_difficult=evaluate_difficult,
ap_type=ap_type)
@evaluator(EvaluatorAttribute.FOR_CLASSIFICATION)

@ -3839,7 +3839,8 @@ def classification_cost(input,
weight=None,
name=None,
evaluator=classification_error_evaluator,
layer_attr=None):
layer_attr=None,
coeff=1.):
"""
classification cost Layer.
@ -3855,6 +3856,8 @@ def classification_cost(input,
:param evaluator: Evaluator method.
:param layer_attr: layer's extra attribute.
:type layer_attr: ExtraLayerAttribute
:param coeff: The coefficient affects the gradient in the backward.
:type coeff: float
:return: LayerOutput object.
:rtype: LayerOutput
"""
@ -3868,6 +3871,7 @@ def classification_cost(input,
name=name,
type="multi-class-cross-entropy",
inputs=ipts,
coeff=coeff,
**ExtraLayerAttribute.to_kwargs(layer_attr))
def __add_evaluator__(e):

@ -45,12 +45,12 @@ __all__ = ['data', 'parse_network']
def __need_to_keep__(name):
return name in [
'StaticInput', 'SubsequenceInput', 'GeneratedInput', 'LayerType',
'layer_support'
'layer_support', 'BaseGeneratedInput'
]
def __need_to_wrap__(name):
return name not in ['AggregateLevel', 'ExpandLevel']
return name not in ['AggregateLevel', 'ExpandLevel', 'BaseGeneratedInput']
def __convert_name__(inname):
@ -199,6 +199,15 @@ def __get_used_submodels__(layer_names):
return submodel_names
def __get_submodel_data_out_links__():
data_links = set()
for submodel in cp.g_config.model_config.sub_models:
for link in submodel.out_links:
if cp.g_layer_map[link.link_name].type == 'data':
data_links.add(link.link_name)
return data_links
def __get_used_evaluators__(layer_names):
evaluator_names = set()
for e in cp.g_config.model_config.evaluators:
@ -264,6 +273,7 @@ def parse_network(output_layers, extra_layers=None):
submodel_names = __get_used_submodels__(layer_names)
submodel_names.add('root')
evaluator_names = __get_used_evaluators__(layer_names)
data_out_links = __get_submodel_data_out_links__()
input_layer_names = set()
output_layer_names = set()
@ -279,7 +289,7 @@ def parse_network(output_layers, extra_layers=None):
continue
model_config.layers.extend([l])
if l.type == 'data':
if l.name in model_config.output_layer_names:
if l.name in data_out_links:
"""
In text generation, the outlink to save the generated word
indices is a data_layer defined in recurrent_group. This

Loading…
Cancel
Save