|
|
|
@ -21,6 +21,7 @@ limitations under the License. */
|
|
|
|
|
#include "boost/optional.hpp"
|
|
|
|
|
#include "paddle/fluid/framework/data_layout_transform.h"
|
|
|
|
|
#include "paddle/fluid/framework/operator.h"
|
|
|
|
|
#include "paddle/fluid/operators/pool_op.h"
|
|
|
|
|
#include "paddle/fluid/platform/mkldnn_helper.h"
|
|
|
|
|
#include "paddle/fluid/platform/place.h"
|
|
|
|
|
|
|
|
|
@ -592,41 +593,100 @@ template <typename T>
|
|
|
|
|
class PoolingMKLDNNHandler : public MKLDNNHandlerT<T, mkldnn::pooling_forward,
|
|
|
|
|
mkldnn::pooling_backward> {
|
|
|
|
|
public:
|
|
|
|
|
PoolingMKLDNNHandler(
|
|
|
|
|
const std::vector<int64_t>& src_dims,
|
|
|
|
|
const std::vector<int64_t>& dst_dims, const std::vector<int64_t>& ksize,
|
|
|
|
|
const std::vector<int64_t>& strides, const std::vector<int64_t>& paddings,
|
|
|
|
|
const std::string& pooling_type, bool ceil_mode,
|
|
|
|
|
const MKLDNNMemoryFormat fmt, mkldnn::memory::data_type dt, bool is_test,
|
|
|
|
|
const platform::MKLDNNDeviceContext& dev_ctx, platform::Place cpu_place,
|
|
|
|
|
const std::string& unique_name, bool exclude_padding)
|
|
|
|
|
PoolingMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
|
|
|
|
|
const MKLDNNDeviceContext& dev_ctx,
|
|
|
|
|
const mkldnn::engine mkldnn_engine,
|
|
|
|
|
platform::Place cpu_place, const Tensor* input,
|
|
|
|
|
Tensor* output, const std::string& unique_name)
|
|
|
|
|
: platform::MKLDNNHandlerT<T, mkldnn::pooling_forward,
|
|
|
|
|
mkldnn::pooling_backward>(
|
|
|
|
|
dev_ctx, dev_ctx.GetEngine(), cpu_place,
|
|
|
|
|
platform::CreateKey(src_dims, dt, unique_name)) {
|
|
|
|
|
auto src_md = mkldnn::memory::desc(src_dims, dt, fmt);
|
|
|
|
|
/* create memory descriptor for pooling without specified format
|
|
|
|
|
* ('any') which lets a primitive (pooling in this case) choose
|
|
|
|
|
* the memory format preferred for best performance
|
|
|
|
|
*/
|
|
|
|
|
auto dst_md =
|
|
|
|
|
platform::MKLDNNMemDesc(dst_dims, dt, MKLDNNMemoryFormat::any);
|
|
|
|
|
platform::CreateKey(framework::vectorize(input->dims()),
|
|
|
|
|
framework::ToMKLDNNDataType(input->type()),
|
|
|
|
|
unique_name)) {
|
|
|
|
|
if (!this->isCached()) {
|
|
|
|
|
PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
|
|
|
|
|
platform::errors::InvalidArgument(
|
|
|
|
|
"Wrong layout set for Input tensor"));
|
|
|
|
|
PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
|
|
|
|
|
platform::errors::InvalidArgument(
|
|
|
|
|
"Wrong format set for Input tensor"));
|
|
|
|
|
|
|
|
|
|
const std::string pooling_type = ctx.Attr<std::string>("pooling_type");
|
|
|
|
|
|
|
|
|
|
std::vector<int> ksize_temp = ctx.Attr<std::vector<int>>("ksize");
|
|
|
|
|
std::vector<int64_t> ksize(begin(ksize_temp), end(ksize_temp));
|
|
|
|
|
|
|
|
|
|
std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
|
|
|
|
|
std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));
|
|
|
|
|
|
|
|
|
|
std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
|
|
|
|
|
std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));
|
|
|
|
|
|
|
|
|
|
const bool global_pooling = ctx.Attr<bool>("global_pooling");
|
|
|
|
|
const std::string padding_algorithm =
|
|
|
|
|
ctx.Attr<std::string>("padding_algorithm");
|
|
|
|
|
|
|
|
|
|
// Only 2D pooling is supported now
|
|
|
|
|
PADDLE_ENFORCE_EQ(ksize.size(), 2,
|
|
|
|
|
platform::errors::InvalidArgument(
|
|
|
|
|
"ksize must be 2D, i.e. 2D pooling"));
|
|
|
|
|
PADDLE_ENFORCE_EQ(pooling_type == "max" || pooling_type == "avg", true,
|
|
|
|
|
platform::errors::InvalidArgument(
|
|
|
|
|
"pooling_type must be 'max' or 'avg'"));
|
|
|
|
|
PADDLE_ENFORCE_EQ(input->dims().size(), 4,
|
|
|
|
|
platform::errors::InvalidArgument(
|
|
|
|
|
"Input dim must be with 4, i.e. NCHW"));
|
|
|
|
|
|
|
|
|
|
const auto input_dims = input->dims();
|
|
|
|
|
framework::DDim data_dims =
|
|
|
|
|
framework::slice_ddim(input_dims, 2, input_dims.size());
|
|
|
|
|
|
|
|
|
|
if (global_pooling) {
|
|
|
|
|
operators::UpdateKsize(&ksize, data_dims);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
auto mkldnn_paddings = ToMkldnnPadding(paddings);
|
|
|
|
|
operators::UpdatePadding(&paddings, global_pooling, 0, padding_algorithm,
|
|
|
|
|
data_dims, strides, ksize);
|
|
|
|
|
|
|
|
|
|
const auto src_tz = paddle::framework::vectorize(input->dims());
|
|
|
|
|
const auto dst_tz = paddle::framework::vectorize(output->dims());
|
|
|
|
|
|
|
|
|
|
const auto is_test = ctx.Attr<bool>("is_test");
|
|
|
|
|
|
|
|
|
|
const auto dt = framework::ToMKLDNNDataType(input->type());
|
|
|
|
|
const auto fmt = input->format();
|
|
|
|
|
|
|
|
|
|
const auto exclude_padding = ctx.Attr<bool>("exclusive");
|
|
|
|
|
|
|
|
|
|
const auto src_md = mkldnn::memory::desc(src_tz, dt, fmt);
|
|
|
|
|
/* create memory descriptor for pooling without specified format
|
|
|
|
|
* ('any') which lets a primitive (pooling in this case) choose
|
|
|
|
|
* the memory format preferred for best performance
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
const auto dst_md =
|
|
|
|
|
platform::MKLDNNMemDesc(dst_tz, dt, MKLDNNMemoryFormat::any);
|
|
|
|
|
|
|
|
|
|
if (ceil_mode) {
|
|
|
|
|
CorrectOutputSize(src_dims, dst_dims, ksize, paddings, strides,
|
|
|
|
|
mkldnn_paddings[1]);
|
|
|
|
|
auto mkldnn_paddings = ToMkldnnPadding(paddings);
|
|
|
|
|
|
|
|
|
|
const bool ceil_mode = ctx.Attr<bool>("ceil_mode");
|
|
|
|
|
|
|
|
|
|
if (ceil_mode) {
|
|
|
|
|
CorrectOutputSize(src_tz, dst_tz, ksize, paddings, strides,
|
|
|
|
|
mkldnn_paddings[1]);
|
|
|
|
|
}
|
|
|
|
|
this->AcquireForwardPrimitiveDescriptor(
|
|
|
|
|
is_test ? mkldnn::prop_kind::forward_inference
|
|
|
|
|
: mkldnn::prop_kind::forward_training,
|
|
|
|
|
pooling_type == "max"
|
|
|
|
|
? mkldnn::algorithm::pooling_max
|
|
|
|
|
: (exclude_padding
|
|
|
|
|
? mkldnn::algorithm::pooling_avg_exclude_padding
|
|
|
|
|
: mkldnn::algorithm::pooling_avg_include_padding),
|
|
|
|
|
src_md, dst_md, strides, ksize, mkldnn_paddings[0],
|
|
|
|
|
mkldnn_paddings[1]);
|
|
|
|
|
}
|
|
|
|
|
this->AcquireForwardPrimitiveDescriptor(
|
|
|
|
|
is_test ? mkldnn::prop_kind::forward_inference
|
|
|
|
|
: mkldnn::prop_kind::forward_training,
|
|
|
|
|
pooling_type == "max"
|
|
|
|
|
? mkldnn::algorithm::pooling_max
|
|
|
|
|
: (exclude_padding
|
|
|
|
|
? mkldnn::algorithm::pooling_avg_exclude_padding
|
|
|
|
|
: mkldnn::algorithm::pooling_avg_include_padding),
|
|
|
|
|
src_md, dst_md, strides, ksize, mkldnn_paddings[0], mkldnn_paddings[1]);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
PoolingMKLDNNHandler(
|
|
|
|
|