parent
ec9a55aea4
commit
56b1b70142
@ -0,0 +1,118 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/split_op.h"
|
||||
#include "paddle/operators/net_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
using framework::Tensor;
|
||||
|
||||
class SplitOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||
// infershape
|
||||
auto *in = ctx.Input<framework::Tensor>("X");
|
||||
auto outs = ctx.MultiOutput<framework::LoDTensor>("Out");
|
||||
size_t axis = static_cast<size_t>(ctx.Attr<int>("axis"));
|
||||
size_t num = static_cast<size_t>(ctx.Attr<int>("num"));
|
||||
std::vector<int> sections =
|
||||
static_cast<std::vector<int>>(ctx.Attr<std::vector<int>>("sections"));
|
||||
const size_t n = outs.size();
|
||||
|
||||
if (num > 0) {
|
||||
int64_t in_axis_dim = in->dims()[axis];
|
||||
PADDLE_ENFORCE_EQ(in_axis_dim % num, 0,
|
||||
"tensor split does not result"
|
||||
" in an equal division");
|
||||
size_t out_axis_dim = in_axis_dim / num;
|
||||
for (size_t i = 0; i < n; ++i) {
|
||||
auto dim = in->dims();
|
||||
dim[axis] = out_axis_dim;
|
||||
outs[i]->Resize(dim);
|
||||
}
|
||||
} else if (sections.size() > 0) {
|
||||
PADDLE_ENFORCE_EQ(sections.size(), n,
|
||||
"tensor split sections size"
|
||||
"should be equal to output size.");
|
||||
for (size_t i = 0; i < n; ++i) {
|
||||
auto dim = in->dims();
|
||||
dim[axis] = sections[i];
|
||||
outs[i]->Resize(dim);
|
||||
}
|
||||
} else {
|
||||
PADDLE_ENFORCE_NOT_NULL(nullptr, "split operator should",
|
||||
" specify indices or sections.");
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
class SplitOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
SplitOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("X", "the input tensor of split operator.");
|
||||
AddOutput("Out", "the output tensors of split operator.").AsDuplicable();
|
||||
AddComment(R"DOC(
|
||||
Split the input tensor into multiple sub-tensors.
|
||||
Example:
|
||||
Input = [[1,2],
|
||||
[3,4],
|
||||
[5,6]]
|
||||
sections = [2,1]
|
||||
axis = 0
|
||||
Output[0] = [[1,2],
|
||||
[3,4]]
|
||||
Output[1] = [[5,6]]
|
||||
|
||||
)DOC");
|
||||
AddAttr<std::vector<int>>("sections",
|
||||
"the length for each"
|
||||
"output along with the specify axis.")
|
||||
.SetDefault(std::vector<int>{});
|
||||
AddAttr<int>("num",
|
||||
"number of the sub-tensors, it must evenly divide "
|
||||
"Input.dims()[axis]")
|
||||
.SetDefault(0);
|
||||
AddAttr<int>("axis", "The axis which the input will be splited on.")
|
||||
.SetDefault(0);
|
||||
}
|
||||
};
|
||||
|
||||
class SplitOpGrad : public NetOp {
|
||||
public:
|
||||
SplitOpGrad(const std::string &type, const framework::VariableNameMap &inputs,
|
||||
const framework::VariableNameMap &outputs,
|
||||
const framework::AttributeMap &attrs)
|
||||
: NetOp(type, inputs, outputs, attrs) {
|
||||
auto out_grad = Inputs(framework::GradVarName("Out"));
|
||||
auto x_grad = Output(framework::GradVarName("X"));
|
||||
AppendOp(framework::OpRegistry::CreateOp("concat", {{"X", out_grad}},
|
||||
{{"Out", {x_grad}}}, attrs));
|
||||
CompleteAddOp(false);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
USE_CPU_ONLY_OP(concat);
|
||||
REGISTER_OP(split, ops::SplitOp, ops::SplitOpMaker, split_grad,
|
||||
ops::SplitOpGrad);
|
||||
REGISTER_OP_CPU_KERNEL(split,
|
||||
ops::SplitKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,62 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <vector>
|
||||
#include "paddle/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename Place, typename T>
|
||||
class SplitKernel : public framework::OpKernel {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto* in = ctx.Input<framework::Tensor>("X");
|
||||
auto outs = ctx.MultiOutput<framework::Tensor>("Out");
|
||||
int64_t axis = static_cast<int64_t>(ctx.Attr<int>("axis"));
|
||||
size_t before = 1, after = 1;
|
||||
const size_t n = outs.size();
|
||||
size_t input_axis_dim = in->dims()[axis];
|
||||
|
||||
for (int64_t i = 0; i < in->dims().size(); ++i) {
|
||||
if (i == axis) {
|
||||
continue;
|
||||
}
|
||||
if (i < axis) {
|
||||
before *= in->dims()[i];
|
||||
} else {
|
||||
after *= in->dims()[i];
|
||||
}
|
||||
}
|
||||
size_t input_offset = 0;
|
||||
for (size_t i = 0; i < n; i++) {
|
||||
auto& out = outs[i];
|
||||
size_t axis_dim = out->dims()[axis];
|
||||
for (size_t j = 0; j < before; j++) {
|
||||
size_t len = axis_dim * after * sizeof(T);
|
||||
T* dest =
|
||||
out->mutable_data<T>(platform::CPUPlace()) + axis_dim * after * j;
|
||||
const T* src =
|
||||
in->data<T>() + input_offset + input_axis_dim * after * j;
|
||||
memcpy(dest, src, len);
|
||||
}
|
||||
input_offset += axis_dim * after;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,26 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
class TestSplitOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "split"
|
||||
axis = 0
|
||||
num = 2
|
||||
x = np.random.random((4, 2)).astype('float32')
|
||||
out = np.split(x, num, axis)
|
||||
self.inputs = {'X': x}
|
||||
self.attrs = {'axis': axis, 'num': num}
|
||||
self.outputs = {'Out': [('out%d' % i, out[i]) \
|
||||
for i in xrange(len(out))]}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(['X'], ['out0', 'out1'])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue