parent
8d253e4965
commit
579f684661
@ -0,0 +1,88 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/ctc_greedy_decode_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
class CTCGreedyDecodeOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("Input"),
|
||||
"Input of CTCGreedyDecodeOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasOutput("Output"),
|
||||
"Output of CTCGreedyDecodeOp should not be null.");
|
||||
|
||||
auto input_dims = ctx->GetInputDim("Input");
|
||||
|
||||
int sequence_width =
|
||||
static_cast<int>(framework::product(input_dims) / input_dims[0]);
|
||||
int blank = ctx->Attrs().Get<int>("blank");
|
||||
PADDLE_ENFORCE((blank >= 0) && (blank < sequence_width),
|
||||
"The value of Attr(blank) should be in interval [0, %d).",
|
||||
sequence_width);
|
||||
// TODO(wanghaoshuang): it is tricky to set the wrong dimension here.
|
||||
ctx->SetOutputDim("Output", {input_dims[0], 1});
|
||||
}
|
||||
|
||||
protected:
|
||||
framework::OpKernelType GetExpectedKernelType(
|
||||
const framework::ExecutionContext& ctx) const override {
|
||||
return framework::OpKernelType(
|
||||
framework::ToDataType(ctx.Input<Tensor>("Input")->type()),
|
||||
ctx.device_context());
|
||||
}
|
||||
};
|
||||
|
||||
class CTCGreedyDecodeOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
CTCGreedyDecodeOpMaker(OpProto* proto, OpAttrChecker* op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("Input",
|
||||
"(LodTensor, default: LoDTensor<float>), the unscaled "
|
||||
"probabilities of variable-length sequences, which is a 2-D "
|
||||
"Tensor with LoD information. It's shape is "
|
||||
"[Lp, num_classes + 1], where Lp is the sum of all input "
|
||||
"sequences' length and num_classes is the true number of classes "
|
||||
"(not including the blank label).");
|
||||
AddOutput("Output", "(Tensor, default: Tensor<int>), the decode result ");
|
||||
AddAttr<int>("blank",
|
||||
"(int, default: 0), the blank label setted in Connectionist "
|
||||
"Temporal Classification (CTC) op, and it is in the "
|
||||
"half-opened interval [0, num_classes + 1).")
|
||||
.SetDefault(0);
|
||||
AddAttr<bool>("merge_repeated",
|
||||
"(bool, default: true), whether to "
|
||||
"merge repeated elements between two blanks. ")
|
||||
.SetDefault(true);
|
||||
AddComment(R"DOC(
|
||||
CTCGreedyDecoder is an implementation of the simple best path decoding
|
||||
algorithm, selecting at each timestep the most likely class at each timestep.
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OPERATOR(ctc_greedy_decode, ops::CTCGreedyDecodeOp,
|
||||
ops::CTCGreedyDecodeOpMaker,
|
||||
paddle::framework::EmptyGradOpMaker);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
ctc_greedy_decode,
|
||||
ops::CTCGreedyDecodeKernel<paddle::platform::CPUDeviceContext, float>);
|
@ -0,0 +1,138 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include <stdio.h>
|
||||
#include <thrust/device_vector.h>
|
||||
#include <thrust/host_vector.h>
|
||||
#include "paddle/operators/ctc_greedy_decode_op.h"
|
||||
#include "paddle/platform/cuda_helper.h"
|
||||
#include "paddle/platform/gpu_info.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
using platform::PADDLE_CUDA_NUM_THREADS;
|
||||
|
||||
__device__ static float atomicMaxF(float* address, float val) {
|
||||
int* address_as_i = (int*)address;
|
||||
int old = *address_as_i, assumed;
|
||||
do {
|
||||
assumed = old;
|
||||
old = ::atomicCAS(address_as_i, assumed,
|
||||
__float_as_int(::fmaxf(val, __int_as_float(assumed))));
|
||||
} while (assumed != old);
|
||||
return __int_as_float(old);
|
||||
}
|
||||
|
||||
template <typename T, int BlockSize>
|
||||
__global__ void ArgmaxCudaKernel(const size_t seq_width, const T* logits,
|
||||
int* output) {
|
||||
T local_max_value = 0;
|
||||
int local_max_index = 0;
|
||||
__shared__ T max_value;
|
||||
if (threadIdx.x == 0) {
|
||||
max_value = 0;
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
for (int i = threadIdx.x; i < seq_width; i += BlockSize) {
|
||||
T value = logits[blockIdx.x * seq_width + i];
|
||||
if (value > local_max_value) {
|
||||
local_max_value = value;
|
||||
local_max_index = i;
|
||||
}
|
||||
}
|
||||
|
||||
atomicMaxF(&max_value, local_max_value);
|
||||
|
||||
__syncthreads();
|
||||
|
||||
if (local_max_value == max_value) {
|
||||
output[blockIdx.x] = local_max_index;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void MergeAndDelCudaKernel(const int64_t num_token, int* tokens,
|
||||
const size_t num_seq, size_t* lod0,
|
||||
const int blank, const int merge_repeated,
|
||||
size_t* out_lod0, int* output) {
|
||||
int ouput_idx = 0;
|
||||
out_lod0[0] = 0;
|
||||
|
||||
for (int i = 0; i < num_seq; ++i) {
|
||||
int pre_token = -1;
|
||||
for (int j = lod0[i]; j < lod0[i + 1]; ++j) {
|
||||
if (tokens[j] != blank && !(merge_repeated && tokens[j] == pre_token)) {
|
||||
output[ouput_idx] = tokens[j];
|
||||
++ouput_idx;
|
||||
}
|
||||
pre_token = tokens[j];
|
||||
}
|
||||
out_lod0[i + 1] = ouput_idx;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
class CTCGreedyDecodeOpCUDAKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
|
||||
"It must use CUDAPlace.");
|
||||
auto* input = ctx.Input<LoDTensor>("Input");
|
||||
auto* output = ctx.Output<LoDTensor>("Output");
|
||||
|
||||
const int64_t num_tokens = input->dims()[0];
|
||||
const size_t seq_width = input->numel() / num_tokens;
|
||||
const T* logits = input->data<T>();
|
||||
Tensor tmp;
|
||||
int* tokens = tmp.mutable_data<int>({num_tokens, 1}, ctx.GetPlace());
|
||||
// get argmax
|
||||
// platform::GpuMemsetAsync(args, 0, sizeof(float), stream);
|
||||
|
||||
auto stream = ctx.cuda_device_context().stream();
|
||||
ArgmaxCudaKernel<T, PADDLE_CUDA_NUM_THREADS><<<
|
||||
num_tokens, PADDLE_CUDA_NUM_THREADS, 0, stream>>>(seq_width, logits,
|
||||
tokens);
|
||||
|
||||
const size_t level = 0;
|
||||
auto input_lod = framework::ToAbsOffset(input->lod());
|
||||
const size_t num_seq = input_lod[level].size() - 1;
|
||||
const int blank = ctx.Attr<int>("blank");
|
||||
const int merge_repeated =
|
||||
static_cast<int>(ctx.Attr<bool>("merge_repeated"));
|
||||
|
||||
thrust::device_vector<size_t> dev_out_lod0(input_lod[level].size());
|
||||
size_t* dev_out_lod0_ptr = thrust::raw_pointer_cast(dev_out_lod0.data());
|
||||
|
||||
int* output_data =
|
||||
output->mutable_data<int>({num_tokens, 1}, ctx.GetPlace());
|
||||
MergeAndDelCudaKernel<T><<<1, 1, 0, stream>>>(
|
||||
num_tokens, tokens, num_seq, input_lod[level].data(), blank,
|
||||
merge_repeated, dev_out_lod0_ptr, output_data);
|
||||
|
||||
thrust::host_vector<size_t> host_out_lod0(dev_out_lod0.begin(),
|
||||
dev_out_lod0.end());
|
||||
framework::LoD out_lod;
|
||||
out_lod.push_back(host_out_lod0);
|
||||
output->set_lod(out_lod);
|
||||
|
||||
output->Resize({static_cast<int64_t>(host_out_lod0.back()), 1});
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
REGISTER_OP_CUDA_KERNEL(ctc_greedy_decode,
|
||||
paddle::operators::CTCGreedyDecodeOpCUDAKernel<float>);
|
@ -0,0 +1,82 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <string.h>
|
||||
#include "paddle/framework/op_registry.h"
|
||||
#include "unsupported/Eigen/CXX11/Tensor"
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using Tensor = framework::Tensor;
|
||||
using LoDTensor = framework::LoDTensor;
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class CTCGreedyDecodeKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto* input = ctx.Input<LoDTensor>("Input");
|
||||
auto* output = ctx.Output<LoDTensor>("Output");
|
||||
const size_t level = 0;
|
||||
|
||||
auto input_lod = framework::ToAbsOffset(input->lod());
|
||||
auto input_dims = input->dims();
|
||||
PADDLE_ENFORCE_EQ(input_dims[0],
|
||||
static_cast<int64_t>(input_lod[level].back()),
|
||||
"The first dimension of Input(Input) should be equal to "
|
||||
"the sum of all sequences' lengths.");
|
||||
|
||||
const size_t num_sequences = input_lod[level].size() - 1;
|
||||
const size_t sequence_width = input->numel() / input_dims[0];
|
||||
size_t blank = static_cast<size_t>(ctx.Attr<int>("blank"));
|
||||
bool merge_repeated = ctx.Attr<bool>("merge_repeated");
|
||||
std::vector<std::vector<int>> pathes(num_sequences);
|
||||
std::vector<size_t> output_lod0(1, 0);
|
||||
|
||||
const T* input_data = input->data<T>();
|
||||
Eigen::Map<
|
||||
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>
|
||||
input_mat(const_cast<T*>(input_data), input->numel() / sequence_width,
|
||||
sequence_width);
|
||||
|
||||
size_t max_class_idx;
|
||||
size_t prev_class_idx = -1;
|
||||
for (size_t seq_idx = 0; seq_idx < num_sequences; ++seq_idx) {
|
||||
for (size_t i = input_lod[level][seq_idx];
|
||||
i < input_lod[level][seq_idx + 1]; ++i) {
|
||||
input_mat.row(i).maxCoeff(&max_class_idx);
|
||||
if (max_class_idx != blank &&
|
||||
!(merge_repeated && max_class_idx == prev_class_idx)) {
|
||||
pathes[seq_idx].push_back(max_class_idx);
|
||||
}
|
||||
prev_class_idx = max_class_idx;
|
||||
}
|
||||
output_lod0.push_back(output_lod0.back() + pathes[seq_idx].size());
|
||||
}
|
||||
framework::LoD output_lod;
|
||||
output_lod.push_back(output_lod0);
|
||||
output->set_lod(output_lod);
|
||||
int64_t num_step = static_cast<int64_t>(output_lod0.back());
|
||||
int* output_data = output->mutable_data<int>({num_step, 1}, ctx.GetPlace());
|
||||
|
||||
for (int i = 0; i < num_sequences; ++i) {
|
||||
memcpy(output_data + output_lod0[i], pathes[i].data(),
|
||||
sizeof(int) * pathes[i].size());
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,56 @@
|
||||
import sys
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
from test_softmax_op import stable_softmax
|
||||
|
||||
|
||||
def CTCGreedyDecode(softmax, blank, merge_repeated):
|
||||
prev_token = -1
|
||||
result = []
|
||||
for token in np.argmax(softmax, axis=1):
|
||||
if (token != blank) and not (merge_repeated and token == prev_token):
|
||||
result.append(token)
|
||||
return np.array(result).reshape([len(result), 1])
|
||||
|
||||
|
||||
class TestCTCGreedyDecodeOp(OpTest):
|
||||
def config(self):
|
||||
self.op_type = "ctc_greedy_decode"
|
||||
self.batch_size = 4
|
||||
self.num_classes = 8
|
||||
self.input_lod = [[0, 4, 5, 8, 11]]
|
||||
self.blank = 7
|
||||
self.merge_repeated = True
|
||||
|
||||
def setUp(self):
|
||||
self.config()
|
||||
input = np.random.uniform(
|
||||
0.1, 1.0,
|
||||
[self.input_lod[0][-1], self.num_classes]).astype("float32")
|
||||
softmax = np.apply_along_axis(stable_softmax, 1, input)
|
||||
output = CTCGreedyDecode(softmax, self.blank, self.merge_repeated)
|
||||
|
||||
self.inputs = {"Input": (softmax, self.input_lod), }
|
||||
self.outputs = {"Output": output}
|
||||
self.attrs = {
|
||||
"blank": self.blank,
|
||||
"merge_repeated": self.merge_repeated
|
||||
}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
|
||||
class TestCTCGreedyDecodeOpCase1(TestCTCGreedyDecodeOp):
|
||||
def config(self):
|
||||
self.op_type = "ctc_greedy_decode"
|
||||
self.batch_size = 4
|
||||
self.num_classes = 1025
|
||||
self.input_lod = [[0, 4, 5, 8, 11]]
|
||||
self.blank = 0
|
||||
self.merge_repeated = True
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue