test=developrevert-16555-model_data_cryption_link_all_lib
parent
69cb9792ea
commit
57f51e5b08
@ -0,0 +1,109 @@
|
||||
# copyright (c) 2019 paddlepaddle authors. all rights reserved.
|
||||
#
|
||||
# licensed under the apache license, version 2.0 (the "license");
|
||||
# you may not use this file except in compliance with the license.
|
||||
# you may obtain a copy of the license at
|
||||
#
|
||||
# http://www.apache.org/licenses/license-2.0
|
||||
#
|
||||
# unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the license is distributed on an "as is" basis,
|
||||
# without warranties or conditions of any kind, either express or implied.
|
||||
# see the license for the specific language governing permissions and
|
||||
# limitations under the license.
|
||||
import unittest
|
||||
import os
|
||||
import numpy as np
|
||||
import time
|
||||
import sys
|
||||
import random
|
||||
import functools
|
||||
import contextlib
|
||||
from PIL import Image, ImageEnhance
|
||||
import math
|
||||
|
||||
random.seed(0)
|
||||
np.random.seed(0)
|
||||
|
||||
DATA_DIM = 224
|
||||
|
||||
SIZE_FLOAT32 = 4
|
||||
SIZE_INT64 = 8
|
||||
|
||||
DATA_DIR = '/data/ILSVRC2012'
|
||||
|
||||
img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
|
||||
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
|
||||
|
||||
|
||||
def resize_short(img, target_size):
|
||||
percent = float(target_size) / min(img.size[0], img.size[1])
|
||||
resized_width = int(round(img.size[0] * percent))
|
||||
resized_height = int(round(img.size[1] * percent))
|
||||
img = img.resize((resized_width, resized_height), Image.LANCZOS)
|
||||
return img
|
||||
|
||||
|
||||
def crop_image(img, target_size, center):
|
||||
width, height = img.size
|
||||
size = target_size
|
||||
if center == True:
|
||||
w_start = (width - size) / 2
|
||||
h_start = (height - size) / 2
|
||||
else:
|
||||
w_start = np.random.randint(0, width - size + 1)
|
||||
h_start = np.random.randint(0, height - size + 1)
|
||||
w_end = w_start + size
|
||||
h_end = h_start + size
|
||||
img = img.crop((w_start, h_start, w_end, h_end))
|
||||
return img
|
||||
|
||||
|
||||
def process_image(img_path, mode, color_jitter, rotate):
|
||||
img = Image.open(img_path)
|
||||
img = resize_short(img, target_size=256)
|
||||
img = crop_image(img, target_size=DATA_DIM, center=True)
|
||||
if img.mode != 'RGB':
|
||||
img = img.convert('RGB')
|
||||
img = np.array(img).astype('float32').transpose((2, 0, 1)) / 255
|
||||
img -= img_mean
|
||||
img /= img_std
|
||||
return img
|
||||
|
||||
|
||||
def reader():
|
||||
data_dir = DATA_DIR
|
||||
file_list = os.path.join(data_dir, 'val_list.txt')
|
||||
bin_file = os.path.join(data_dir, 'data.bin')
|
||||
with open(file_list) as flist:
|
||||
lines = [line.strip() for line in flist]
|
||||
num_images = len(lines)
|
||||
|
||||
with open(bin_file, "w+b") as of:
|
||||
of.seek(0)
|
||||
num = np.array(int(num_images)).astype('int64')
|
||||
of.write(num.tobytes())
|
||||
for idx, line in enumerate(lines):
|
||||
img_path, label = line.split()
|
||||
img_path = os.path.join(data_dir, img_path)
|
||||
if not os.path.exists(img_path):
|
||||
continue
|
||||
|
||||
#save image(float32) to file
|
||||
img = process_image(
|
||||
img_path, 'val', color_jitter=False, rotate=False)
|
||||
np_img = np.array(img)
|
||||
of.seek(SIZE_INT64 + SIZE_FLOAT32 * DATA_DIM * DATA_DIM * 3 *
|
||||
idx)
|
||||
of.write(np_img.astype('float32').tobytes())
|
||||
|
||||
#save label(int64_t) to file
|
||||
label_int = (int)(label)
|
||||
np_label = np.array(label_int)
|
||||
of.seek(SIZE_INT64 + SIZE_FLOAT32 * DATA_DIM * DATA_DIM * 3 *
|
||||
num_images + idx * SIZE_INT64)
|
||||
of.write(np_label.astype('int64').tobytes())
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
reader()
|
Loading…
Reference in new issue