|
|
|
@ -20,6 +20,9 @@ namespace paddle {
|
|
|
|
|
namespace operators {
|
|
|
|
|
|
|
|
|
|
using Tensor = framework::Tensor;
|
|
|
|
|
template <typename T, int MajorType = Eigen::RowMajor,
|
|
|
|
|
typename IndexType = Eigen::DenseIndex>
|
|
|
|
|
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
|
|
|
|
|
template <typename T, int MajorType = Eigen::RowMajor,
|
|
|
|
|
typename IndexType = Eigen::DenseIndex>
|
|
|
|
|
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
|
|
|
|
@ -46,7 +49,7 @@ class SquaredL2DistanceKernel : public framework::OpKernel {
|
|
|
|
|
out0->mutable_data<T>(context.GetPlace());
|
|
|
|
|
out1->mutable_data<T>(context.GetPlace());
|
|
|
|
|
auto sub_result = EigenMatrix<T>::From(*out0);
|
|
|
|
|
auto z = EigenMatrix<T>::From(*out1);
|
|
|
|
|
auto z = EigenVector<T>::Flatten(*out1);
|
|
|
|
|
|
|
|
|
|
auto place = context.GetEigenDevice<Place>();
|
|
|
|
|
auto x_dims = x.dimensions();
|
|
|
|
@ -55,13 +58,12 @@ class SquaredL2DistanceKernel : public framework::OpKernel {
|
|
|
|
|
if (y_dims[0] == 1 && x_dims[0] > y_dims[0]) {
|
|
|
|
|
sub_result.device(place) =
|
|
|
|
|
x -
|
|
|
|
|
y.broadcast(Eigen::array<int, 2>({static_cast<int>(x_dims[0]), 1}));
|
|
|
|
|
y.broadcast(Eigen::array<int, 2>({{static_cast<int>(x_dims[0]), 1}}));
|
|
|
|
|
} else {
|
|
|
|
|
sub_result.device(place) = x - y;
|
|
|
|
|
}
|
|
|
|
|
auto sub_res_pow2 = sub_result * sub_result;
|
|
|
|
|
// z is TensorMap, no need reshape
|
|
|
|
|
z.device(place) = sub_res_pow2.sum(Eigen::array<int, 1>({1}));
|
|
|
|
|
z.device(place) = sub_res_pow2.sum(Eigen::array<int, 1>({{1}}));
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
@ -82,8 +84,9 @@ class SquaredL2DistanceGradKernel : public framework::OpKernel {
|
|
|
|
|
|
|
|
|
|
int cols = framework::product(x_dims) / x_dims[0];
|
|
|
|
|
// calculate gradient
|
|
|
|
|
auto grad_mat =
|
|
|
|
|
2 * (out_grad.broadcast(Eigen::array<int, 2>({1, cols}))) * sub_result;
|
|
|
|
|
auto grad_mat = 2 *
|
|
|
|
|
(out_grad.broadcast(Eigen::array<int, 2>({{1, cols}}))) *
|
|
|
|
|
sub_result;
|
|
|
|
|
|
|
|
|
|
// propagate back to input
|
|
|
|
|
auto eigen_place = context.GetEigenDevice<Place>();
|
|
|
|
@ -98,18 +101,18 @@ class SquaredL2DistanceGradKernel : public framework::OpKernel {
|
|
|
|
|
|
|
|
|
|
if (y_g) {
|
|
|
|
|
y_g->mutable_data<T>(context.GetPlace());
|
|
|
|
|
auto y_grad =
|
|
|
|
|
EigenMatrix<T>::From(*y_g, framework::make_ddim({y_dims[0], cols}));
|
|
|
|
|
|
|
|
|
|
PADDLE_ENFORCE_GE(sub_result.dimensions()[0], y_dims[0],
|
|
|
|
|
"First dimension of gradient must be greater or "
|
|
|
|
|
"equal than first dimension of target.");
|
|
|
|
|
|
|
|
|
|
if (sub_result.dimensions()[0] == y_dims[0]) {
|
|
|
|
|
auto y_grad =
|
|
|
|
|
EigenMatrix<T>::From(*y_g, framework::make_ddim({y_dims[0], cols}));
|
|
|
|
|
y_grad.device(eigen_place) = -1 * grad_mat;
|
|
|
|
|
} else {
|
|
|
|
|
auto col_sum_res = -1 * (grad_mat.sum(Eigen::array<int, 1>({0})));
|
|
|
|
|
// y_grad is TensorMap, no need reshape
|
|
|
|
|
auto col_sum_res = -1 * (grad_mat.sum(Eigen::array<int, 1>({{0}})));
|
|
|
|
|
auto y_grad = EigenVector<T>::Flatten(*y_g);
|
|
|
|
|
y_grad.device(eigen_place) = col_sum_res;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|