Using EigenVector to replace EigenMatrix for some variables.

Adaptive_data_structure_for_SwitchOrderLayer
yangyaming 8 years ago
parent 9802c42555
commit 57f9723d36

@ -20,6 +20,9 @@ namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
@ -46,7 +49,7 @@ class SquaredL2DistanceKernel : public framework::OpKernel {
out0->mutable_data<T>(context.GetPlace());
out1->mutable_data<T>(context.GetPlace());
auto sub_result = EigenMatrix<T>::From(*out0);
auto z = EigenMatrix<T>::From(*out1);
auto z = EigenVector<T>::Flatten(*out1);
auto place = context.GetEigenDevice<Place>();
auto x_dims = x.dimensions();
@ -55,13 +58,12 @@ class SquaredL2DistanceKernel : public framework::OpKernel {
if (y_dims[0] == 1 && x_dims[0] > y_dims[0]) {
sub_result.device(place) =
x -
y.broadcast(Eigen::array<int, 2>({static_cast<int>(x_dims[0]), 1}));
y.broadcast(Eigen::array<int, 2>({{static_cast<int>(x_dims[0]), 1}}));
} else {
sub_result.device(place) = x - y;
}
auto sub_res_pow2 = sub_result * sub_result;
// z is TensorMap, no need reshape
z.device(place) = sub_res_pow2.sum(Eigen::array<int, 1>({1}));
z.device(place) = sub_res_pow2.sum(Eigen::array<int, 1>({{1}}));
}
};
@ -82,8 +84,9 @@ class SquaredL2DistanceGradKernel : public framework::OpKernel {
int cols = framework::product(x_dims) / x_dims[0];
// calculate gradient
auto grad_mat =
2 * (out_grad.broadcast(Eigen::array<int, 2>({1, cols}))) * sub_result;
auto grad_mat = 2 *
(out_grad.broadcast(Eigen::array<int, 2>({{1, cols}}))) *
sub_result;
// propagate back to input
auto eigen_place = context.GetEigenDevice<Place>();
@ -98,18 +101,18 @@ class SquaredL2DistanceGradKernel : public framework::OpKernel {
if (y_g) {
y_g->mutable_data<T>(context.GetPlace());
auto y_grad =
EigenMatrix<T>::From(*y_g, framework::make_ddim({y_dims[0], cols}));
PADDLE_ENFORCE_GE(sub_result.dimensions()[0], y_dims[0],
"First dimension of gradient must be greater or "
"equal than first dimension of target.");
if (sub_result.dimensions()[0] == y_dims[0]) {
auto y_grad =
EigenMatrix<T>::From(*y_g, framework::make_ddim({y_dims[0], cols}));
y_grad.device(eigen_place) = -1 * grad_mat;
} else {
auto col_sum_res = -1 * (grad_mat.sum(Eigen::array<int, 1>({0})));
// y_grad is TensorMap, no need reshape
auto col_sum_res = -1 * (grad_mat.sum(Eigen::array<int, 1>({{0}})));
auto y_grad = EigenVector<T>::Flatten(*y_g);
y_grad.device(eigen_place) = col_sum_res;
}
}

Loading…
Cancel
Save