|
|
|
@ -12,6 +12,7 @@
|
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
|
|
import os
|
|
|
|
|
import core
|
|
|
|
|
import framework
|
|
|
|
|
import executor
|
|
|
|
@ -20,6 +21,7 @@ import contextlib
|
|
|
|
|
|
|
|
|
|
# optimizer is same as the parameter of Trainer.__init__. Rename it to opt_module
|
|
|
|
|
import optimizer as opt_module
|
|
|
|
|
import distribute_transpiler
|
|
|
|
|
|
|
|
|
|
__all__ = [
|
|
|
|
|
'Trainer',
|
|
|
|
@ -76,22 +78,61 @@ class Trainer(object):
|
|
|
|
|
raise TypeError(
|
|
|
|
|
"The optimizer should be an instance of Optimizer")
|
|
|
|
|
|
|
|
|
|
optimizer.minimize(loss)
|
|
|
|
|
optimize_ops, params_grads = optimizer.minimize(loss)
|
|
|
|
|
|
|
|
|
|
self.place = Trainer._check_and_get_place(place)
|
|
|
|
|
|
|
|
|
|
self.dist_transpile_if_necessary(optimize_ops, params_grads)
|
|
|
|
|
|
|
|
|
|
# 2. move the default_main_program to self.program and run the
|
|
|
|
|
# default_startup program on an empty core.Scope()
|
|
|
|
|
# Run startup program
|
|
|
|
|
exe = executor.Executor(place)
|
|
|
|
|
exe.run(self.startup_program, scope=self.scope)
|
|
|
|
|
with self._prog_and_scope_guard():
|
|
|
|
|
exe = executor.Executor(place)
|
|
|
|
|
exe.run(self.startup_program)
|
|
|
|
|
|
|
|
|
|
if param_path:
|
|
|
|
|
# load params from param_path into scope
|
|
|
|
|
# TODO(yuyang): This depends on parameters implementation.
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
# TODO(helin): support distributed training
|
|
|
|
|
def dist_transpile_if_necessary(self, optimize_ops, params_grads):
|
|
|
|
|
if "PADDLE_TRAINING_ROLE" not in os.environ:
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
# the port of all pservers, needed by both trainer and pserver
|
|
|
|
|
port = os.getenv("PADDLE_PSERVER_PORT", "6174")
|
|
|
|
|
# comma separated ips of all pservers, needed by trainer and
|
|
|
|
|
# pserver
|
|
|
|
|
pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
|
|
|
|
|
eplist = []
|
|
|
|
|
for ip in pserver_ips.split(","):
|
|
|
|
|
eplist.append(':'.join([ip, port]))
|
|
|
|
|
pserver_endpoints = ",".join(eplist)
|
|
|
|
|
# total number of workers/trainers in the job, needed by
|
|
|
|
|
# trainer and pserver
|
|
|
|
|
trainers = int(os.getenv("PADDLE_TRAINERS"))
|
|
|
|
|
# the IP of the local machine, needed by pserver only
|
|
|
|
|
current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
|
|
|
|
|
# the unique trainer id, starting from 0, needed by trainer
|
|
|
|
|
# only
|
|
|
|
|
trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
|
|
|
|
|
# the role, should be either PSERVER or TRAINER
|
|
|
|
|
training_role = os.getenv("PADDLE_TRAINING_ROLE")
|
|
|
|
|
with self._prog_and_scope_guard():
|
|
|
|
|
t = distribute_transpiler.DistributeTranspiler()
|
|
|
|
|
t.transpile(
|
|
|
|
|
trainer_id, pservers=pserver_endpoints, trainers=trainers)
|
|
|
|
|
if training_role == "PSERVER":
|
|
|
|
|
self.train_program = t.get_pserver_program(current_endpoint)
|
|
|
|
|
self.startup_program = t.get_startup_program(current_endpoint,
|
|
|
|
|
self.train_program)
|
|
|
|
|
elif training_role == "TRAINER":
|
|
|
|
|
self.train_program = t.get_trainer_program()
|
|
|
|
|
else:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
'TRAINING_ROLE environment variable must be either TRAINER or PSERVER'
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
def train(self,
|
|
|
|
|
num_epochs,
|
|
|
|
@ -117,6 +158,13 @@ class Trainer(object):
|
|
|
|
|
raise NotImplementedError(
|
|
|
|
|
"Parallel Executor version of trainer is not implemented")
|
|
|
|
|
|
|
|
|
|
training_role = os.getenv("PADDLE_TRAINING_ROLE", "")
|
|
|
|
|
if training_role == "PSERVER":
|
|
|
|
|
with self._prog_and_scope_guard():
|
|
|
|
|
exe = executor.Executor(self.place)
|
|
|
|
|
exe.run()
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
self._train_by_executor(num_epochs, event_handler, reader, feed_order)
|
|
|
|
|
|
|
|
|
|
def test(self, reader):
|
|
|
|
|