|
|
|
@ -1,4 +1,4 @@
|
|
|
|
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
|
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
you may not use this file except in compliance with the License.
|
|
|
|
|
You may obtain a copy of the License at
|
|
|
|
@ -35,67 +35,52 @@ class BoxCoderKernel : public framework::OpKernel<T> {
|
|
|
|
|
public:
|
|
|
|
|
void EncodeCenterSize(const Tensor& target_box, const Tensor& prior_box,
|
|
|
|
|
const Tensor& prior_box_var, T* output) const {
|
|
|
|
|
PADDLE_ENFORCE_EQ(target_box.dims().size(), 2,
|
|
|
|
|
"The rank of target_box must be 2.");
|
|
|
|
|
PADDLE_ENFORCE_EQ(prior_box.dims().size(), 2,
|
|
|
|
|
"The rank of prior_box must be 2.");
|
|
|
|
|
PADDLE_ENFORCE_EQ(prior_box_var.dims().size(), 2,
|
|
|
|
|
"The rank of prior_box_var must be 2.");
|
|
|
|
|
PADDLE_ENFORCE_EQ(prior_box.dims()[0], prior_box_var.dims()[0],
|
|
|
|
|
"The dims of prior_box must equal to prior_box_var.");
|
|
|
|
|
|
|
|
|
|
int64_t row = target_box.dims()[0];
|
|
|
|
|
int64_t col = prior_box.dims()[0];
|
|
|
|
|
int64_t len = prior_box.dims()[1];
|
|
|
|
|
auto* target_box_data = target_box.data<T>();
|
|
|
|
|
auto* prior_box_data = prior_box.data<T>();
|
|
|
|
|
auto* prior_box_var_data = prior_box_var.data<T>();
|
|
|
|
|
|
|
|
|
|
for (int64_t i = 0; i < row; ++i) {
|
|
|
|
|
for (int64_t j = 0; j < col; ++j) {
|
|
|
|
|
T prior_box_width = prior_box_data[j * 4 + 2] - prior_box_data[j * 4];
|
|
|
|
|
T prior_box_width =
|
|
|
|
|
prior_box_data[j * len + 2] - prior_box_data[j * len];
|
|
|
|
|
T prior_box_height =
|
|
|
|
|
prior_box_data[j * 4 + 3] - prior_box_data[j * 4 + 1];
|
|
|
|
|
prior_box_data[j * len + 3] - prior_box_data[j * len + 1];
|
|
|
|
|
T prior_box_center_x =
|
|
|
|
|
(prior_box_data[j * 4 + 2] + prior_box_data[j * 4]) / 2;
|
|
|
|
|
(prior_box_data[j * len + 2] + prior_box_data[j * len]) / 2;
|
|
|
|
|
T prior_box_center_y =
|
|
|
|
|
(prior_box_data[j * 4 + 3] + prior_box_data[j * 4 + 1]) / 2;
|
|
|
|
|
(prior_box_data[j * len + 3] + prior_box_data[j * len + 1]) / 2;
|
|
|
|
|
|
|
|
|
|
T target_box_center_x =
|
|
|
|
|
(target_box_data[i * 4 + 2] + target_box_data[i * 4]) / 2;
|
|
|
|
|
(target_box_data[i * len + 2] + target_box_data[i * len]) / 2;
|
|
|
|
|
T target_box_center_y =
|
|
|
|
|
(target_box_data[i * 4 + 3] + target_box_data[i * 4 + 1]) / 2;
|
|
|
|
|
(target_box_data[i * len + 3] + target_box_data[i * len + 1]) / 2;
|
|
|
|
|
T target_box_width =
|
|
|
|
|
target_box_data[i * 4 + 2] - target_box_data[i * 4];
|
|
|
|
|
target_box_data[i * len + 2] - target_box_data[i * len];
|
|
|
|
|
T target_box_height =
|
|
|
|
|
target_box_data[i * 4 + 3] - target_box_data[i * 4 + 1];
|
|
|
|
|
target_box_data[i * len + 3] - target_box_data[i * len + 1];
|
|
|
|
|
|
|
|
|
|
size_t offset = i * col * 4 + j * 4;
|
|
|
|
|
size_t offset = i * col * len + j * len;
|
|
|
|
|
output[offset] = (target_box_center_x - prior_box_center_x) /
|
|
|
|
|
prior_box_width / prior_box_var_data[j * 4];
|
|
|
|
|
prior_box_width / prior_box_var_data[j * len];
|
|
|
|
|
output[offset + 1] = (target_box_center_y - prior_box_center_y) /
|
|
|
|
|
prior_box_height / prior_box_var_data[j * 4 + 1];
|
|
|
|
|
prior_box_height / prior_box_var_data[j * len + 1];
|
|
|
|
|
output[offset + 2] =
|
|
|
|
|
std::log(std::fabs(target_box_width / prior_box_width)) /
|
|
|
|
|
prior_box_var_data[j * 4 + 2];
|
|
|
|
|
prior_box_var_data[j * len + 2];
|
|
|
|
|
output[offset + 3] =
|
|
|
|
|
std::log(std::fabs(target_box_height / prior_box_height)) /
|
|
|
|
|
prior_box_var_data[j * 4 + 3];
|
|
|
|
|
prior_box_var_data[j * len + 3];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
void DecodeCenterSize(const Tensor& target_box, const Tensor& prior_box,
|
|
|
|
|
const Tensor& prior_box_var, T* output) const {
|
|
|
|
|
PADDLE_ENFORCE_EQ(target_box.dims().size(), 2,
|
|
|
|
|
"The rank of target_box must be 2.");
|
|
|
|
|
PADDLE_ENFORCE_EQ(prior_box.dims().size(), 2,
|
|
|
|
|
"The rank of prior_box must be 2.");
|
|
|
|
|
PADDLE_ENFORCE_EQ(prior_box_var.dims().size(), 2,
|
|
|
|
|
"The rank of prior_box_var must be 2.");
|
|
|
|
|
PADDLE_ENFORCE_EQ(prior_box.dims()[0], prior_box_var.dims()[0],
|
|
|
|
|
"The dims of prior_box must equal to prior_box_var.");
|
|
|
|
|
|
|
|
|
|
int64_t row = target_box.dims()[0];
|
|
|
|
|
int64_t col = prior_box.dims()[0];
|
|
|
|
|
int64_t len = prior_box.dims()[1];
|
|
|
|
|
|
|
|
|
|
auto* target_box_data = target_box.data<T>();
|
|
|
|
|
auto* prior_box_data = prior_box.data<T>();
|
|
|
|
@ -103,29 +88,30 @@ class BoxCoderKernel : public framework::OpKernel<T> {
|
|
|
|
|
|
|
|
|
|
for (int64_t i = 0; i < row; ++i) {
|
|
|
|
|
for (int64_t j = 0; j < col; ++j) {
|
|
|
|
|
T prior_box_width = prior_box_data[j * 4 + 2] - prior_box_data[j * 4];
|
|
|
|
|
T prior_box_width =
|
|
|
|
|
prior_box_data[j * len + 2] - prior_box_data[j * len];
|
|
|
|
|
T prior_box_height =
|
|
|
|
|
prior_box_data[j * 4 + 3] - prior_box_data[j * 4 + 1];
|
|
|
|
|
prior_box_data[j * len + 3] - prior_box_data[j * len + 1];
|
|
|
|
|
T prior_box_center_x =
|
|
|
|
|
(prior_box_data[j * 4 + 2] + prior_box_data[j * 4]) / 2;
|
|
|
|
|
(prior_box_data[j * len + 2] + prior_box_data[j * len]) / 2;
|
|
|
|
|
T prior_box_center_y =
|
|
|
|
|
(prior_box_data[j * 4 + 3] + prior_box_data[j * 4 + 1]) / 2;
|
|
|
|
|
(prior_box_data[j * len + 3] + prior_box_data[j * len + 1]) / 2;
|
|
|
|
|
|
|
|
|
|
T target_box_center_x = prior_box_var_data[j * 4] *
|
|
|
|
|
target_box_data[i * 4] * prior_box_width +
|
|
|
|
|
T target_box_center_x = prior_box_var_data[j * len] *
|
|
|
|
|
target_box_data[i * len] * prior_box_width +
|
|
|
|
|
prior_box_center_x;
|
|
|
|
|
T target_box_center_y = prior_box_var_data[j * 4 + 1] *
|
|
|
|
|
target_box_data[i * 4 + 1] *
|
|
|
|
|
T target_box_center_y = prior_box_var_data[j * len + 1] *
|
|
|
|
|
target_box_data[i * len + 1] *
|
|
|
|
|
prior_box_height +
|
|
|
|
|
prior_box_center_y;
|
|
|
|
|
T target_box_width = std::exp(prior_box_var_data[j * 4 + 2] *
|
|
|
|
|
target_box_data[i * 4 + 2]) *
|
|
|
|
|
T target_box_width = std::exp(prior_box_var_data[j * len + 2] *
|
|
|
|
|
target_box_data[i * len + 2]) *
|
|
|
|
|
prior_box_width;
|
|
|
|
|
T target_box_height = std::exp(prior_box_var_data[j * 4 + 3] *
|
|
|
|
|
target_box_data[i * 4 + 3]) *
|
|
|
|
|
T target_box_height = std::exp(prior_box_var_data[j * len + 3] *
|
|
|
|
|
target_box_data[i * len + 3]) *
|
|
|
|
|
prior_box_height;
|
|
|
|
|
|
|
|
|
|
size_t offset = i * col * 4 + j * 4;
|
|
|
|
|
size_t offset = i * col * len + j * len;
|
|
|
|
|
output[offset] = target_box_center_x - target_box_width / 2;
|
|
|
|
|
output[offset + 1] = target_box_center_y - target_box_height / 2;
|
|
|
|
|
output[offset + 2] = target_box_center_x + target_box_width / 2;
|
|
|
|
@ -146,8 +132,9 @@ class BoxCoderKernel : public framework::OpKernel<T> {
|
|
|
|
|
}
|
|
|
|
|
auto row = target_box->dims()[0];
|
|
|
|
|
auto col = prior_box->dims()[0];
|
|
|
|
|
auto len = prior_box->dims()[1];
|
|
|
|
|
|
|
|
|
|
output_box->mutable_data<T>({row, col, 4}, context.GetPlace());
|
|
|
|
|
output_box->mutable_data<T>({row, col, len}, context.GetPlace());
|
|
|
|
|
|
|
|
|
|
auto code_type = GetBoxCodeType(context.Attr<std::string>("code_type"));
|
|
|
|
|
T* output = output_box->data<T>();
|
|
|
|
|