|
|
|
@ -16,13 +16,13 @@ import numpy as np
|
|
|
|
|
from op_test import OpTest
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def bipartite_match(distance, match_indices, match_dis):
|
|
|
|
|
def bipartite_match(distance, match_indices, match_dist):
|
|
|
|
|
"""Bipartite Matching algorithm.
|
|
|
|
|
Arg:
|
|
|
|
|
distance (numpy.array) : The distance of two entries with shape [M, N].
|
|
|
|
|
match_indices (numpy.array): the matched indices from column to row
|
|
|
|
|
with shape [1, N], it must be initialized to -1.
|
|
|
|
|
match_dis (numpy.array): The matched distance from column to row
|
|
|
|
|
match_dist (numpy.array): The matched distance from column to row
|
|
|
|
|
with shape [1, N], it must be initialized to 0.
|
|
|
|
|
"""
|
|
|
|
|
match_pair = []
|
|
|
|
@ -36,13 +36,13 @@ def bipartite_match(distance, match_indices, match_dis):
|
|
|
|
|
row_indices = -1 * np.ones((row, ), dtype=np.int)
|
|
|
|
|
|
|
|
|
|
idx = 0
|
|
|
|
|
for i, j, dis in match_sorted:
|
|
|
|
|
for i, j, dist in match_sorted:
|
|
|
|
|
if idx >= row:
|
|
|
|
|
break
|
|
|
|
|
if match_indices[j] == -1 and row_indices[i] == -1 and dis > 0:
|
|
|
|
|
if match_indices[j] == -1 and row_indices[i] == -1 and dist > 0:
|
|
|
|
|
match_indices[j] = i
|
|
|
|
|
row_indices[i] = j
|
|
|
|
|
match_dis[j] = dis
|
|
|
|
|
match_dist[j] = dist
|
|
|
|
|
idx += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -55,24 +55,24 @@ def batch_bipartite_match(distance, lod):
|
|
|
|
|
n = len(lod) - 1
|
|
|
|
|
m = distance.shape[1]
|
|
|
|
|
match_indices = -1 * np.ones((n, m), dtype=np.int)
|
|
|
|
|
match_dis = np.zeros((n, m), dtype=np.float32)
|
|
|
|
|
match_dist = np.zeros((n, m), dtype=np.float32)
|
|
|
|
|
for i in range(len(lod) - 1):
|
|
|
|
|
bipartite_match(distance[lod[i]:lod[i + 1], :], match_indices[i, :],
|
|
|
|
|
match_dis[i, :])
|
|
|
|
|
return match_indices, match_dis
|
|
|
|
|
match_dist[i, :])
|
|
|
|
|
return match_indices, match_dist
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestBipartiteMatchOpForWithLoD(OpTest):
|
|
|
|
|
def setUp(self):
|
|
|
|
|
self.op_type = 'bipartite_match'
|
|
|
|
|
lod = [[0, 5, 11, 23]]
|
|
|
|
|
dis = np.random.random((23, 217)).astype('float32')
|
|
|
|
|
match_indices, match_dis = batch_bipartite_match(dis, lod[0])
|
|
|
|
|
dist = np.random.random((23, 217)).astype('float32')
|
|
|
|
|
match_indices, match_dist = batch_bipartite_match(dist, lod[0])
|
|
|
|
|
|
|
|
|
|
self.inputs = {'DistMat': (dis, lod)}
|
|
|
|
|
self.inputs = {'DistMat': (dist, lod)}
|
|
|
|
|
self.outputs = {
|
|
|
|
|
'ColToRowMatchIndices': (match_indices),
|
|
|
|
|
'ColToRowMatchDis': (match_dis),
|
|
|
|
|
'ColToRowMatchDis': (match_dist),
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
def test_check_output(self):
|
|
|
|
@ -83,13 +83,13 @@ class TestBipartiteMatchOpWithoutLoD(OpTest):
|
|
|
|
|
def setUp(self):
|
|
|
|
|
self.op_type = 'bipartite_match'
|
|
|
|
|
lod = [[0, 8]]
|
|
|
|
|
dis = np.random.random((8, 17)).astype('float32')
|
|
|
|
|
match_indices, match_dis = batch_bipartite_match(dis, lod[0])
|
|
|
|
|
dist = np.random.random((8, 17)).astype('float32')
|
|
|
|
|
match_indices, match_dist = batch_bipartite_match(dist, lod[0])
|
|
|
|
|
|
|
|
|
|
self.inputs = {'DistMat': dis}
|
|
|
|
|
self.inputs = {'DistMat': dist}
|
|
|
|
|
self.outputs = {
|
|
|
|
|
'ColToRowMatchIndices': (match_indices),
|
|
|
|
|
'ColToRowMatchDis': (match_dis),
|
|
|
|
|
'ColToRowMatchIndices': match_indices,
|
|
|
|
|
'ColToRowMatchDis': match_dist,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
def test_check_output(self):
|
|
|
|
|