commit
59bf85d914
@ -0,0 +1,89 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/sequence_erase_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
class SequenceEraseOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("X"),
|
||||
"Input(X) of SequenceEraseOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
||||
"Output(Out) of SequenceEraseOp should not be null.");
|
||||
auto x_dims = ctx->GetInputDim("X");
|
||||
PADDLE_ENFORCE(x_dims.size() == 2 && x_dims[1] == 1,
|
||||
"Input(X) of SequenceEraseOp should be a 2-D LoDTensor "
|
||||
"with the 2nd dimension equal to 1.");
|
||||
ctx->SetOutputDim("Out", x_dims);
|
||||
}
|
||||
};
|
||||
|
||||
class SequenceEraseOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
SequenceEraseOpMaker(OpProto* proto, OpAttrChecker* op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("X",
|
||||
"(2-D LoDTensor with the 2nd dim. equal to 1) "
|
||||
"Input LoDTensor of SequenceEraseOp.");
|
||||
AddOutput("Out",
|
||||
"(2-D LoDTensor with the 2nd dim. equal to 1) "
|
||||
"Output LoDTensor of SequenceEraseOp.");
|
||||
AddAttr<std::vector<int>>("tokens",
|
||||
"(vector<int>) Tokens need to be erased from "
|
||||
"input sequences.");
|
||||
AddComment(R"DOC(
|
||||
Sequence Erase Operator.
|
||||
|
||||
Sequence erase operator erases tokens specified by Attr(tokens) from the input
|
||||
sequences Input(X), and outputs the remaining data and modifies the LoD
|
||||
information at the same time. For example, given a 2-D LoDTensor
|
||||
|
||||
X = [[2, 2, 6, 1, 3, 9, 6, 1, 0, 1]]^T
|
||||
|
||||
with lod = [[0, 3, 6, 10]], there are three sequences in the input:
|
||||
|
||||
X1 = [[2, 2, 6]]^T, X2 = [[1, 3, 9]]^T and X3 = [[6, 1, 0, 1]]^T.
|
||||
|
||||
If the tokens to be erased are Attr(tokens) = [2, 3, 5], after the erasing
|
||||
operation, the three sequences become
|
||||
|
||||
X1' = [[6]]^T, X2' = [[1, 9]]^T and X3' = [[6, 1, 0, 1]]^T.
|
||||
|
||||
Hence the LoDTensor Output(Out) should be
|
||||
|
||||
Out = [[6, 1, 9, 6, 1, 0, 1]]^T,
|
||||
|
||||
with lod = [[0, 1, 3, 7]].
|
||||
|
||||
An example usage for this operator is to remove the special tokens when
|
||||
computing the edit distance between two strings, such as blank, start token,
|
||||
and end token.
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_WITHOUT_GRADIENT(sequence_erase, ops::SequenceEraseOp,
|
||||
ops::SequenceEraseOpMaker);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
sequence_erase,
|
||||
ops::SequenceEraseKernel<paddle::platform::CPUDeviceContext, int32_t>);
|
@ -0,0 +1,133 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include <thrust/device_vector.h>
|
||||
#include <thrust/host_vector.h>
|
||||
#include "paddle/operators/sequence_erase_op.h"
|
||||
#include "paddle/platform/cuda_helper.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
using platform::PADDLE_CUDA_NUM_THREADS;
|
||||
using LoDTensor = framework::LoDTensor;
|
||||
|
||||
template <typename T>
|
||||
__global__ void LabelErasedIdx(const T* in_dat, const int in_len,
|
||||
const T* tokens, const int tokens_len,
|
||||
int* num_erased) {
|
||||
int index = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
if (index < in_len) {
|
||||
int erased = 0;
|
||||
for (int i = 0; i < tokens_len; ++i) {
|
||||
if (in_dat[index] == tokens[i]) {
|
||||
erased = 1;
|
||||
}
|
||||
}
|
||||
num_erased[index + 1] = erased;
|
||||
if (index == 0) {
|
||||
num_erased[0] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void GetOutLod(const T* num_erased, const int* in_lod,
|
||||
const int lod_len, int* out_lod0) {
|
||||
int index = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
if (index < lod_len) {
|
||||
out_lod0[index] = in_lod[index] - num_erased[in_lod[index]];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void SetOutput(const T* in_dat, const int in_len,
|
||||
const int* num_erased, T* out_dat) {
|
||||
int index = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
if (index < in_len) {
|
||||
if (in_dat[index] != in_dat[index + 1]) {
|
||||
out_dat[index - num_erased[index]] = in_dat[index];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
class SequenceEraseOpCUDAKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto* in = ctx.Input<LoDTensor>("X");
|
||||
auto* out = ctx.Output<LoDTensor>("Out");
|
||||
|
||||
auto lod = in->lod();
|
||||
PADDLE_ENFORCE_EQ(lod.size(), 1UL, "Only support one level sequence now.");
|
||||
PADDLE_ENFORCE_EQ(lod[0].back(), (size_t)in->numel(),
|
||||
"The actual size mismatches with the LoD information.");
|
||||
auto tokens = ctx.Attr<std::vector<T>>("tokens");
|
||||
auto tokens_len = tokens.size();
|
||||
auto in_len = in->numel();
|
||||
auto in_dat = in->data<T>();
|
||||
auto lod0 = lod[0];
|
||||
|
||||
thrust::host_vector<T> host_tokens(tokens_len);
|
||||
for (size_t i = 0; i < tokens.size(); ++i) {
|
||||
host_tokens[i] = tokens[i];
|
||||
}
|
||||
thrust::device_vector<T> dev_tokens = host_tokens;
|
||||
thrust::device_vector<int> num_erased(in_len + 1);
|
||||
|
||||
T* dev_tokens_ptr = thrust::raw_pointer_cast(dev_tokens.data());
|
||||
int* num_erased_ptr = thrust::raw_pointer_cast(num_erased.data());
|
||||
|
||||
auto stream = ctx.cuda_device_context().stream();
|
||||
LabelErasedIdx<<<(in_len - 1) / PADDLE_CUDA_NUM_THREADS + 1,
|
||||
PADDLE_CUDA_NUM_THREADS, 0, stream>>>(
|
||||
in_dat, in_len, dev_tokens_ptr, tokens_len, num_erased_ptr);
|
||||
thrust::inclusive_scan(num_erased.begin() + 1, num_erased.end(),
|
||||
num_erased.begin() + 1);
|
||||
|
||||
// Calc LoD
|
||||
auto lod_len = lod0.size();
|
||||
thrust::host_vector<int> host_lod(lod_len);
|
||||
for (size_t i = 0; i < lod_len; ++i) {
|
||||
host_lod[i] = lod0[i];
|
||||
}
|
||||
thrust::device_vector<int> dev_in_lod = host_lod;
|
||||
thrust::device_vector<int> dev_out_lod(lod_len);
|
||||
int* dev_in_lod_ptr = thrust::raw_pointer_cast(dev_in_lod.data());
|
||||
int* dev_out_lod_ptr = thrust::raw_pointer_cast(dev_out_lod.data());
|
||||
GetOutLod<<<(lod_len - 1) / PADDLE_CUDA_NUM_THREADS + 1,
|
||||
PADDLE_CUDA_NUM_THREADS, 0, stream>>>(
|
||||
num_erased_ptr, dev_in_lod_ptr, lod_len, dev_out_lod_ptr);
|
||||
thrust::host_vector<int> host_out_lod = dev_out_lod;
|
||||
std::vector<int> out_lod0(lod_len, 0);
|
||||
for (size_t i = 0; i < lod_len; i++) {
|
||||
out_lod0[i] = host_out_lod[i];
|
||||
}
|
||||
framework::LoD out_lod;
|
||||
out_lod.push_back(out_lod0);
|
||||
out->set_lod(out_lod);
|
||||
|
||||
// Set output
|
||||
out->Resize({out_lod0.back(), 1});
|
||||
auto out_dat = out->mutable_data<T>(ctx.GetPlace());
|
||||
SetOutput<<<(in_len - 1) / PADDLE_CUDA_NUM_THREADS + 1,
|
||||
PADDLE_CUDA_NUM_THREADS, 0, stream>>>(in_dat, in_len,
|
||||
num_erased_ptr, out_dat);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
REGISTER_OP_CUDA_KERNEL(sequence_erase,
|
||||
paddle::operators::SequenceEraseOpCUDAKernel<int32_t>);
|
@ -0,0 +1,70 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "paddle/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class SequenceEraseKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto* in = ctx.Input<framework::LoDTensor>("X");
|
||||
auto* out = ctx.Output<framework::LoDTensor>("Out");
|
||||
|
||||
auto lod = in->lod();
|
||||
PADDLE_ENFORCE_EQ(lod.size(), 1UL, "Only support one level sequence now.");
|
||||
PADDLE_ENFORCE_EQ(lod[0].back(), (size_t)in->numel(),
|
||||
"The actual size mismatches with the LoD information.");
|
||||
auto tokens = ctx.Attr<std::vector<int>>("tokens");
|
||||
auto in_len = in->numel();
|
||||
auto in_dat = in->data<T>();
|
||||
auto lod0 = lod[0];
|
||||
|
||||
std::vector<size_t> num_erased(in_len + 1, 0);
|
||||
std::vector<size_t> out_lod0(1, 0);
|
||||
for (size_t i = 0; i < lod0.size() - 1; ++i) {
|
||||
size_t num_out = 0;
|
||||
for (auto j = lod0[i] + 1; j <= lod0[i + 1]; ++j) {
|
||||
num_erased[j] = num_erased[j - 1];
|
||||
if (std::find(tokens.begin(), tokens.end(), in_dat[j - 1]) !=
|
||||
tokens.end()) {
|
||||
num_erased[j] += 1;
|
||||
} else {
|
||||
num_out += 1;
|
||||
}
|
||||
}
|
||||
out_lod0.push_back(out_lod0.back() + num_out);
|
||||
}
|
||||
|
||||
auto out_len = in_len - num_erased[in_len];
|
||||
out->Resize({static_cast<int64_t>(out_len), 1});
|
||||
auto out_dat = out->mutable_data<T>(ctx.GetPlace());
|
||||
|
||||
for (int64_t i = 0; i < in_len; ++i) {
|
||||
if (num_erased[i] == num_erased[i + 1]) {
|
||||
out_dat[i - num_erased[i]] = in_dat[i];
|
||||
}
|
||||
}
|
||||
framework::LoD out_lod;
|
||||
out_lod.push_back(out_lod0);
|
||||
out->set_lod(out_lod);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,35 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
def sequence_erase(in_seq, lod0, tokens):
|
||||
new_lod0 = [0]
|
||||
out_seq = []
|
||||
for i in range(0, len(lod0) - 1):
|
||||
num_out = 0
|
||||
for dat in in_seq[lod0[i]:lod0[i + 1]]:
|
||||
if dat not in tokens:
|
||||
out_seq.append(dat)
|
||||
num_out += 1
|
||||
new_lod0.append(new_lod0[-1] + num_out)
|
||||
return np.array(out_seq).astype("int32"), new_lod0
|
||||
|
||||
|
||||
class TestSequenceEraseOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "sequence_erase"
|
||||
in_seq = np.random.randint(0, 10, (30, 1)).astype("int32")
|
||||
lod = [[0, 9, 13, 24, 30]]
|
||||
tokens = [2, 3, 5]
|
||||
out_seq, new_lod0 = sequence_erase(in_seq, lod[0], tokens)
|
||||
self.attrs = {'tokens': tokens}
|
||||
self.inputs = {'X': (in_seq, lod)}
|
||||
self.outputs = {'Out': (out_seq, [new_lod0])}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue