Merge pull request #1476 from wangkuiyi/dataset
Simplify CIFAR/MNIST Data Package, Remove Scipy/sklearn package dependencies.avx_docs
commit
59f7778bb1
@ -1,82 +1,61 @@
|
||||
"""
|
||||
CIFAR Dataset.
|
||||
|
||||
URL: https://www.cs.toronto.edu/~kriz/cifar.html
|
||||
|
||||
the default train_creator, test_creator used for CIFAR-10 dataset.
|
||||
CIFAR dataset: https://www.cs.toronto.edu/~kriz/cifar.html
|
||||
"""
|
||||
import cPickle
|
||||
import itertools
|
||||
import tarfile
|
||||
|
||||
import numpy
|
||||
import paddle.v2.dataset.common
|
||||
import tarfile
|
||||
|
||||
from config import download
|
||||
|
||||
__all__ = [
|
||||
'cifar_100_train_creator', 'cifar_100_test_creator', 'train_creator',
|
||||
'test_creator'
|
||||
]
|
||||
__all__ = ['train100', 'test100', 'train10', 'test10']
|
||||
|
||||
CIFAR10_URL = 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz'
|
||||
URL_PREFIX = 'https://www.cs.toronto.edu/~kriz/'
|
||||
CIFAR10_URL = URL_PREFIX + 'cifar-10-python.tar.gz'
|
||||
CIFAR10_MD5 = 'c58f30108f718f92721af3b95e74349a'
|
||||
CIFAR100_URL = 'https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz'
|
||||
CIFAR100_URL = URL_PREFIX + 'cifar-100-python.tar.gz'
|
||||
CIFAR100_MD5 = 'eb9058c3a382ffc7106e4002c42a8d85'
|
||||
|
||||
|
||||
def __read_batch__(filename, sub_name):
|
||||
def reader():
|
||||
def __read_one_batch_impl__(batch):
|
||||
data = batch['data']
|
||||
labels = batch.get('labels', batch.get('fine_labels', None))
|
||||
assert labels is not None
|
||||
for sample, label in itertools.izip(data, labels):
|
||||
yield (sample / 255.0).astype(numpy.float32), int(label)
|
||||
def reader_creator(filename, sub_name):
|
||||
def read_batch(batch):
|
||||
data = batch['data']
|
||||
labels = batch.get('labels', batch.get('fine_labels', None))
|
||||
assert labels is not None
|
||||
for sample, label in itertools.izip(data, labels):
|
||||
yield (sample / 255.0).astype(numpy.float32), int(label)
|
||||
|
||||
def reader():
|
||||
with tarfile.open(filename, mode='r') as f:
|
||||
names = (each_item.name for each_item in f
|
||||
if sub_name in each_item.name)
|
||||
|
||||
for name in names:
|
||||
batch = cPickle.load(f.extractfile(name))
|
||||
for item in __read_one_batch_impl__(batch):
|
||||
for item in read_batch(batch):
|
||||
yield item
|
||||
|
||||
return reader
|
||||
|
||||
|
||||
def cifar_100_train_creator():
|
||||
fn = download(url=CIFAR100_URL, md5=CIFAR100_MD5)
|
||||
return __read_batch__(fn, 'train')
|
||||
|
||||
|
||||
def cifar_100_test_creator():
|
||||
fn = download(url=CIFAR100_URL, md5=CIFAR100_MD5)
|
||||
return __read_batch__(fn, 'test')
|
||||
|
||||
|
||||
def train_creator():
|
||||
"""
|
||||
Default train reader creator. Use CIFAR-10 dataset.
|
||||
"""
|
||||
fn = download(url=CIFAR10_URL, md5=CIFAR10_MD5)
|
||||
return __read_batch__(fn, 'data_batch')
|
||||
def train100():
|
||||
return reader_creator(
|
||||
paddle.v2.dataset.common.download(CIFAR100_URL, 'cifar', CIFAR100_MD5),
|
||||
'train')
|
||||
|
||||
|
||||
def test_creator():
|
||||
"""
|
||||
Default test reader creator. Use CIFAR-10 dataset.
|
||||
"""
|
||||
fn = download(url=CIFAR10_URL, md5=CIFAR10_MD5)
|
||||
return __read_batch__(fn, 'test_batch')
|
||||
def test100():
|
||||
return reader_creator(
|
||||
paddle.v2.dataset.common.download(CIFAR100_URL, 'cifar', CIFAR100_MD5),
|
||||
'test')
|
||||
|
||||
|
||||
def unittest():
|
||||
for _ in train_creator()():
|
||||
pass
|
||||
for _ in test_creator()():
|
||||
pass
|
||||
def train10():
|
||||
return reader_creator(
|
||||
paddle.v2.dataset.common.download(CIFAR10_URL, 'cifar', CIFAR10_MD5),
|
||||
'data_batch')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest()
|
||||
def test10():
|
||||
return reader_creator(
|
||||
paddle.v2.dataset.common.download(CIFAR10_URL, 'cifar', CIFAR10_MD5),
|
||||
'test_batch')
|
||||
|
@ -0,0 +1,34 @@
|
||||
import requests
|
||||
import hashlib
|
||||
import os
|
||||
import shutil
|
||||
|
||||
__all__ = ['DATA_HOME', 'download', 'md5file']
|
||||
|
||||
DATA_HOME = os.path.expanduser('~/.cache/paddle/dataset')
|
||||
|
||||
if not os.path.exists(DATA_HOME):
|
||||
os.makedirs(DATA_HOME)
|
||||
|
||||
|
||||
def md5file(fname):
|
||||
hash_md5 = hashlib.md5()
|
||||
f = open(fname, "rb")
|
||||
for chunk in iter(lambda: f.read(4096), b""):
|
||||
hash_md5.update(chunk)
|
||||
f.close()
|
||||
return hash_md5.hexdigest()
|
||||
|
||||
|
||||
def download(url, module_name, md5sum):
|
||||
dirname = os.path.join(DATA_HOME, module_name)
|
||||
if not os.path.exists(dirname):
|
||||
os.makedirs(dirname)
|
||||
|
||||
filename = os.path.join(dirname, url.split('/')[-1])
|
||||
if not (os.path.exists(filename) and md5file(filename) == md5sum):
|
||||
r = requests.get(url, stream=True)
|
||||
with open(filename, 'w') as f:
|
||||
shutil.copyfileobj(r.raw, f)
|
||||
|
||||
return filename
|
@ -1,36 +0,0 @@
|
||||
import hashlib
|
||||
import os
|
||||
import shutil
|
||||
import urllib2
|
||||
|
||||
__all__ = ['DATA_HOME', 'download']
|
||||
|
||||
DATA_HOME = os.path.expanduser('~/.cache/paddle_data_set')
|
||||
|
||||
if not os.path.exists(DATA_HOME):
|
||||
os.makedirs(DATA_HOME)
|
||||
|
||||
|
||||
def download(url, md5):
|
||||
filename = os.path.split(url)[-1]
|
||||
assert DATA_HOME is not None
|
||||
filepath = os.path.join(DATA_HOME, md5)
|
||||
if not os.path.exists(filepath):
|
||||
os.makedirs(filepath)
|
||||
__full_file__ = os.path.join(filepath, filename)
|
||||
|
||||
def __file_ok__():
|
||||
if not os.path.exists(__full_file__):
|
||||
return False
|
||||
md5_hash = hashlib.md5()
|
||||
with open(__full_file__, 'rb') as f:
|
||||
for chunk in iter(lambda: f.read(4096), b""):
|
||||
md5_hash.update(chunk)
|
||||
|
||||
return md5_hash.hexdigest() == md5
|
||||
|
||||
while not __file_ok__():
|
||||
response = urllib2.urlopen(url)
|
||||
with open(__full_file__, mode='wb') as of:
|
||||
shutil.copyfileobj(fsrc=response, fdst=of)
|
||||
return __full_file__
|
@ -1,39 +1,66 @@
|
||||
import sklearn.datasets.mldata
|
||||
import sklearn.model_selection
|
||||
"""
|
||||
MNIST dataset.
|
||||
"""
|
||||
import numpy
|
||||
from config import DATA_HOME
|
||||
import paddle.v2.dataset.common
|
||||
import subprocess
|
||||
|
||||
__all__ = ['train_creator', 'test_creator']
|
||||
__all__ = ['train', 'test']
|
||||
|
||||
URL_PREFIX = 'http://yann.lecun.com/exdb/mnist/'
|
||||
TEST_IMAGE_URL = URL_PREFIX + 't10k-images-idx3-ubyte.gz'
|
||||
TEST_IMAGE_MD5 = '25e3cc63507ef6e98d5dc541e8672bb6'
|
||||
TEST_LABEL_URL = URL_PREFIX + 't10k-labels-idx1-ubyte.gz'
|
||||
TEST_LABEL_MD5 = '4e9511fe019b2189026bd0421ba7b688'
|
||||
TRAIN_IMAGE_URL = URL_PREFIX + 'train-images-idx3-ubyte.gz'
|
||||
TRAIN_IMAGE_MD5 = 'f68b3c2dcbeaaa9fbdd348bbdeb94873'
|
||||
TRAIN_LABEL_URL = URL_PREFIX + 'train-labels-idx1-ubyte.gz'
|
||||
TRAIN_LABEL_MD5 = 'd53e105ee54ea40749a09fcbcd1e9432'
|
||||
|
||||
def __mnist_reader_creator__(data, target):
|
||||
|
||||
def reader_creator(image_filename, label_filename, buffer_size):
|
||||
def reader():
|
||||
n_samples = data.shape[0]
|
||||
for i in xrange(n_samples):
|
||||
yield (data[i] / 255.0).astype(numpy.float32), int(target[i])
|
||||
# According to http://stackoverflow.com/a/38061619/724872, we
|
||||
# cannot use standard package gzip here.
|
||||
m = subprocess.Popen(["zcat", image_filename], stdout=subprocess.PIPE)
|
||||
m.stdout.read(16) # skip some magic bytes
|
||||
|
||||
return reader
|
||||
l = subprocess.Popen(["zcat", label_filename], stdout=subprocess.PIPE)
|
||||
l.stdout.read(8) # skip some magic bytes
|
||||
|
||||
while True:
|
||||
labels = numpy.fromfile(
|
||||
l.stdout, 'ubyte', count=buffer_size).astype("int")
|
||||
|
||||
TEST_SIZE = 10000
|
||||
if labels.size != buffer_size:
|
||||
break # numpy.fromfile returns empty slice after EOF.
|
||||
|
||||
data = sklearn.datasets.mldata.fetch_mldata(
|
||||
"MNIST original", data_home=DATA_HOME)
|
||||
X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(
|
||||
data.data, data.target, test_size=TEST_SIZE, random_state=0)
|
||||
images = numpy.fromfile(
|
||||
m.stdout, 'ubyte', count=buffer_size * 28 * 28).reshape(
|
||||
(buffer_size, 28 * 28)).astype('float32')
|
||||
|
||||
images = images / 255.0 * 2.0 - 1.0
|
||||
|
||||
def train_creator():
|
||||
return __mnist_reader_creator__(X_train, y_train)
|
||||
for i in xrange(buffer_size):
|
||||
yield images[i, :], int(labels[i])
|
||||
|
||||
m.terminate()
|
||||
l.terminate()
|
||||
|
||||
def test_creator():
|
||||
return __mnist_reader_creator__(X_test, y_test)
|
||||
return reader
|
||||
|
||||
|
||||
def unittest():
|
||||
assert len(list(test_creator()())) == TEST_SIZE
|
||||
def train():
|
||||
return reader_creator(
|
||||
paddle.v2.dataset.common.download(TRAIN_IMAGE_URL, 'mnist',
|
||||
TRAIN_IMAGE_MD5),
|
||||
paddle.v2.dataset.common.download(TRAIN_LABEL_URL, 'mnist',
|
||||
TRAIN_LABEL_MD5), 100)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest()
|
||||
def test():
|
||||
return reader_creator(
|
||||
paddle.v2.dataset.common.download(TEST_IMAGE_URL, 'mnist',
|
||||
TEST_IMAGE_MD5),
|
||||
paddle.v2.dataset.common.download(TEST_LABEL_URL, 'mnist',
|
||||
TEST_LABEL_MD5), 100)
|
||||
|
@ -0,0 +1,42 @@
|
||||
import paddle.v2.dataset.cifar
|
||||
import unittest
|
||||
|
||||
|
||||
class TestCIFAR(unittest.TestCase):
|
||||
def check_reader(self, reader):
|
||||
sum = 0
|
||||
label = 0
|
||||
for l in reader():
|
||||
self.assertEqual(l[0].size, 3072)
|
||||
if l[1] > label:
|
||||
label = l[1]
|
||||
sum += 1
|
||||
return sum, label
|
||||
|
||||
def test_test10(self):
|
||||
instances, max_label_value = self.check_reader(
|
||||
paddle.v2.dataset.cifar.test10())
|
||||
self.assertEqual(instances, 10000)
|
||||
self.assertEqual(max_label_value, 9)
|
||||
|
||||
def test_train10(self):
|
||||
instances, max_label_value = self.check_reader(
|
||||
paddle.v2.dataset.cifar.train10())
|
||||
self.assertEqual(instances, 50000)
|
||||
self.assertEqual(max_label_value, 9)
|
||||
|
||||
def test_test100(self):
|
||||
instances, max_label_value = self.check_reader(
|
||||
paddle.v2.dataset.cifar.test100())
|
||||
self.assertEqual(instances, 10000)
|
||||
self.assertEqual(max_label_value, 99)
|
||||
|
||||
def test_train100(self):
|
||||
instances, max_label_value = self.check_reader(
|
||||
paddle.v2.dataset.cifar.train100())
|
||||
self.assertEqual(instances, 50000)
|
||||
self.assertEqual(max_label_value, 99)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
@ -0,0 +1,23 @@
|
||||
import paddle.v2.dataset.common
|
||||
import unittest
|
||||
import tempfile
|
||||
|
||||
|
||||
class TestCommon(unittest.TestCase):
|
||||
def test_md5file(self):
|
||||
_, temp_path = tempfile.mkstemp()
|
||||
with open(temp_path, 'w') as f:
|
||||
f.write("Hello\n")
|
||||
self.assertEqual('09f7e02f1290be211da707a266f153b3',
|
||||
paddle.v2.dataset.common.md5file(temp_path))
|
||||
|
||||
def test_download(self):
|
||||
yi_avatar = 'https://avatars0.githubusercontent.com/u/1548775?v=3&s=460'
|
||||
self.assertEqual(
|
||||
paddle.v2.dataset.common.DATA_HOME + '/test/1548775?v=3&s=460',
|
||||
paddle.v2.dataset.common.download(
|
||||
yi_avatar, 'test', 'f75287202d6622414c706c36c16f8e0d'))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
@ -0,0 +1,30 @@
|
||||
import paddle.v2.dataset.mnist
|
||||
import unittest
|
||||
|
||||
|
||||
class TestMNIST(unittest.TestCase):
|
||||
def check_reader(self, reader):
|
||||
sum = 0
|
||||
label = 0
|
||||
for l in reader():
|
||||
self.assertEqual(l[0].size, 784)
|
||||
if l[1] > label:
|
||||
label = l[1]
|
||||
sum += 1
|
||||
return sum, label
|
||||
|
||||
def test_train(self):
|
||||
instances, max_label_value = self.check_reader(
|
||||
paddle.v2.dataset.mnist.train())
|
||||
self.assertEqual(instances, 60000)
|
||||
self.assertEqual(max_label_value, 9)
|
||||
|
||||
def test_test(self):
|
||||
instances, max_label_value = self.check_reader(
|
||||
paddle.v2.dataset.mnist.test())
|
||||
self.assertEqual(instances, 10000)
|
||||
self.assertEqual(max_label_value, 9)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue