|
|
|
@ -119,14 +119,14 @@ void CrossMapNormalGrad<DEVICE_TYPE_CPU>(real* inputsGrad,
|
|
|
|
|
*
|
|
|
|
|
* The original formula is:
|
|
|
|
|
*
|
|
|
|
|
* Input(x, y)
|
|
|
|
|
* Output(x, y) = ---------------------------------------------
|
|
|
|
|
* -- upper
|
|
|
|
|
* (k + alpha * > (Input(x, y))^2) ^ (beta)
|
|
|
|
|
* -- lower
|
|
|
|
|
* Input(i, x, y)
|
|
|
|
|
* Output(i, x, y) = ----------------------------------------------
|
|
|
|
|
* -- upper
|
|
|
|
|
* (k + alpha * > (Input(j, x, y))^2) ^ (beta)
|
|
|
|
|
* -- j = lower
|
|
|
|
|
*
|
|
|
|
|
* upper is `min(F, f-[N/2] + N)`
|
|
|
|
|
* lower if `max(0, f-[N/2])`
|
|
|
|
|
* upper is `min(C, c + N/2)`
|
|
|
|
|
* lower if `max(0, c - N/2)`
|
|
|
|
|
*
|
|
|
|
|
* Function implementation:
|
|
|
|
|
*
|
|
|
|
@ -134,8 +134,12 @@ void CrossMapNormalGrad<DEVICE_TYPE_CPU>(real* inputsGrad,
|
|
|
|
|
* And the meaning of each dimension(0-3) is respectively batch size,
|
|
|
|
|
* feature maps, rows and columns.
|
|
|
|
|
*
|
|
|
|
|
* Input and Output in the above formula is for each map of one image, and
|
|
|
|
|
* Input(x, y), Output(x, y) represents an element in an image.
|
|
|
|
|
* Input and Output in the above formula is for each map(i) of one image, and
|
|
|
|
|
* Input(i, x, y), Output(i, x, y) represents an element in an image.
|
|
|
|
|
*
|
|
|
|
|
* C is the number of feature maps of one image, and N is a hyper-parameters
|
|
|
|
|
* is configured when Function is initialized. The sum in the denominator
|
|
|
|
|
* is the sum of the same position in the neighboring maps.
|
|
|
|
|
*
|
|
|
|
|
* In the implementation of Function, k is equal to 1,
|
|
|
|
|
* so Function has no argument for k.
|
|
|
|
@ -199,20 +203,26 @@ private:
|
|
|
|
|
/**
|
|
|
|
|
* \brief Backward calculation for normalization with across maps.
|
|
|
|
|
*
|
|
|
|
|
* Function implementation:
|
|
|
|
|
*
|
|
|
|
|
* The implementation of this Function is derived from the
|
|
|
|
|
* CrossMapNormalFunc implementation.
|
|
|
|
|
*
|
|
|
|
|
* InputGrad = OutputGrad * denoms ^ (-beta)
|
|
|
|
|
* /
|
|
|
|
|
* + | (OutputGrad * OutputValue * (-2 * alpha * beta) / denoms) * InputValue
|
|
|
|
|
* /
|
|
|
|
|
* -- upper
|
|
|
|
|
* + > (OutputGrad * OutputValue * (-2 * alpha * beta) / denoms) * InputValue
|
|
|
|
|
* -- lower
|
|
|
|
|
*
|
|
|
|
|
* Argument in the Function:
|
|
|
|
|
* The data of inputs/outputs format is the same as the forward interface
|
|
|
|
|
* and is NCHW.
|
|
|
|
|
*
|
|
|
|
|
* The upper and lower is the same as forward. The logic of the sum
|
|
|
|
|
* is also the same as forward.
|
|
|
|
|
*
|
|
|
|
|
* Function Arguments:
|
|
|
|
|
*
|
|
|
|
|
* \param size_ represent N
|
|
|
|
|
* \param scale_ represent alpha / N
|
|
|
|
|
* \param scale_ represent alpha
|
|
|
|
|
* \param pow_ represent beta
|
|
|
|
|
* \param inputs[0] represent InputValue, inputs[0] of CrossMapNormalFunc
|
|
|
|
|
* \param inputs[1] represent OutputValue, outputs[0] of CrossMapNormalFunc
|
|
|
|
|