|
|
|
@ -84,149 +84,41 @@ class TestElementwiseModOpDouble(TestElementwiseModOpFloat):
|
|
|
|
|
self.dtype = np.float64
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestRemainderAPI(unittest.TestCase):
|
|
|
|
|
def setUp(self):
|
|
|
|
|
paddle.set_default_dtype("float64")
|
|
|
|
|
self.places = [fluid.CPUPlace()]
|
|
|
|
|
if core.is_compiled_with_cuda():
|
|
|
|
|
self.places.append(fluid.CUDAPlace(0))
|
|
|
|
|
|
|
|
|
|
def check_static_result(self, place):
|
|
|
|
|
# rule 1
|
|
|
|
|
with fluid.program_guard(fluid.Program(), fluid.Program()):
|
|
|
|
|
x = fluid.data(name="x", shape=[3], dtype="float64")
|
|
|
|
|
y = np.array([1, 2, 3])
|
|
|
|
|
self.assertRaises(TypeError, paddle.remainder, x=x, y=y)
|
|
|
|
|
|
|
|
|
|
# rule 3:
|
|
|
|
|
with fluid.program_guard(fluid.Program(), fluid.Program()):
|
|
|
|
|
x = fluid.data(name="x", shape=[3], dtype="float64")
|
|
|
|
|
y = fluid.data(name="y", shape=[3], dtype="float32")
|
|
|
|
|
self.assertRaises(TypeError, paddle.remainder, x=x, y=y)
|
|
|
|
|
|
|
|
|
|
# rule 4: x is Tensor, y is scalar
|
|
|
|
|
with fluid.program_guard(fluid.Program(), fluid.Program()):
|
|
|
|
|
x = fluid.data(name="x", shape=[3], dtype="float64")
|
|
|
|
|
y = 2
|
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
|
res = x % y
|
|
|
|
|
np_z = exe.run(fluid.default_main_program(),
|
|
|
|
|
feed={"x": np.array([2, 3, 4]).astype('float64')},
|
|
|
|
|
fetch_list=[res])
|
|
|
|
|
z_expected = np.array([0., 1., 0.])
|
|
|
|
|
self.assertEqual((np_z[0] == z_expected).all(), True)
|
|
|
|
|
|
|
|
|
|
# rule 5: y is Tensor, x is scalar
|
|
|
|
|
with fluid.program_guard(fluid.Program(), fluid.Program()):
|
|
|
|
|
x = 3
|
|
|
|
|
y = fluid.data(name="y", shape=[3], dtype="float32")
|
|
|
|
|
self.assertRaises(TypeError, paddle.remainder, x=x, y=y)
|
|
|
|
|
|
|
|
|
|
# rule 6: y is Tensor, x is Tensor
|
|
|
|
|
with fluid.program_guard(fluid.Program(), fluid.Program()):
|
|
|
|
|
x = fluid.data(name="x", shape=[3], dtype="float64")
|
|
|
|
|
y = fluid.data(name="y", shape=[1], dtype="float64")
|
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
|
res = x % y
|
|
|
|
|
np_z = exe.run(fluid.default_main_program(),
|
|
|
|
|
feed={
|
|
|
|
|
"x": np.array([1., 2., 4]).astype('float64'),
|
|
|
|
|
"y": np.array([1.5]).astype('float64')
|
|
|
|
|
},
|
|
|
|
|
fetch_list=[res])
|
|
|
|
|
z_expected = np.array([1., 0.5, 1.0])
|
|
|
|
|
self.assertEqual((np_z[0] == z_expected).all(), True)
|
|
|
|
|
|
|
|
|
|
# rule 6: y is Tensor, x is Tensor
|
|
|
|
|
with fluid.program_guard(fluid.Program(), fluid.Program()):
|
|
|
|
|
x = fluid.data(name="x", shape=[6], dtype="float64")
|
|
|
|
|
y = fluid.data(name="y", shape=[1], dtype="float64")
|
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
|
res = x % y
|
|
|
|
|
np_z = exe.run(
|
|
|
|
|
fluid.default_main_program(),
|
|
|
|
|
feed={
|
|
|
|
|
"x": np.array([-3., -2, -1, 1, 2, 3]).astype('float64'),
|
|
|
|
|
"y": np.array([2]).astype('float64')
|
|
|
|
|
},
|
|
|
|
|
fetch_list=[res])
|
|
|
|
|
z_expected = np.array([1., 0., 1., 1., 0., 1.])
|
|
|
|
|
self.assertEqual((np_z[0] == z_expected).all(), True)
|
|
|
|
|
|
|
|
|
|
def test_static(self):
|
|
|
|
|
for place in self.places:
|
|
|
|
|
self.check_static_result(place=place)
|
|
|
|
|
class TestRemainderOp(unittest.TestCase):
|
|
|
|
|
def test_name(self):
|
|
|
|
|
with fluid.program_guard(fluid.Program()):
|
|
|
|
|
x = fluid.data(name="x", shape=[2, 3], dtype="int64")
|
|
|
|
|
y = fluid.data(name='y', shape=[2, 3], dtype='int64')
|
|
|
|
|
|
|
|
|
|
y_1 = paddle.remainder(x, y, name='div_res')
|
|
|
|
|
self.assertEqual(('div_res' in y_1.name), True)
|
|
|
|
|
|
|
|
|
|
def test_dygraph(self):
|
|
|
|
|
for place in self.places:
|
|
|
|
|
with fluid.dygraph.guard(place):
|
|
|
|
|
# rule 1 : avoid numpy.ndarray
|
|
|
|
|
np_x = np.array([2, 3, 4])
|
|
|
|
|
np_y = np.array([1, 5, 2])
|
|
|
|
|
x = paddle.to_tensor(np_x)
|
|
|
|
|
self.assertRaises(TypeError, paddle.remainder, x=x, y=np_y)
|
|
|
|
|
|
|
|
|
|
# rule 3: both the inputs are Tensor
|
|
|
|
|
np_x = np.array([2, 3, 4])
|
|
|
|
|
np_y = np.array([1, 5, 2])
|
|
|
|
|
x = paddle.to_tensor(np_x, dtype="float32")
|
|
|
|
|
y = paddle.to_tensor(np_y, dtype="float64")
|
|
|
|
|
self.assertRaises(TypeError, paddle.remainder, x=x, y=y)
|
|
|
|
|
|
|
|
|
|
# rule 4: x is Tensor, y is scalar
|
|
|
|
|
np_x = np.array([2, 3, 4])
|
|
|
|
|
x = paddle.to_tensor(np_x, dtype="int32")
|
|
|
|
|
y = 2
|
|
|
|
|
z = x % y
|
|
|
|
|
z_expected = np.array([0, 1, 0])
|
|
|
|
|
self.assertEqual((z_expected == z.numpy()).all(), True)
|
|
|
|
|
|
|
|
|
|
# rule 5: y is Tensor, x is scalar
|
|
|
|
|
np_x = np.array([2, 3, 4])
|
|
|
|
|
x = paddle.to_tensor(np_x)
|
|
|
|
|
self.assertRaises(TypeError, paddle.remainder, x=3, y=x)
|
|
|
|
|
|
|
|
|
|
# rule 6: y is Tensor, x is Tensor
|
|
|
|
|
np_x = np.array([1., 2., 4])
|
|
|
|
|
np_y = np.array([1.5])
|
|
|
|
|
x = paddle.to_tensor(np_x)
|
|
|
|
|
y = paddle.to_tensor(np_y)
|
|
|
|
|
z = x % y
|
|
|
|
|
z_expected = np.array([1., 0.5, 1.0])
|
|
|
|
|
self.assertEqual((z_expected == z.numpy()).all(), True)
|
|
|
|
|
|
|
|
|
|
# rule 6: y is Tensor, x is Tensor
|
|
|
|
|
np_x = np.array([-3., -2, -1, 1, 2, 3])
|
|
|
|
|
np_y = np.array([2.])
|
|
|
|
|
x = paddle.to_tensor(np_x)
|
|
|
|
|
y = paddle.to_tensor(np_y)
|
|
|
|
|
z = x % y
|
|
|
|
|
z_expected = np.array([1., 0., 1., 1., 0., 1.])
|
|
|
|
|
self.assertEqual((z_expected == z.numpy()).all(), True)
|
|
|
|
|
|
|
|
|
|
np_x = np.array([-3.3, 11.5, -2, 3.5])
|
|
|
|
|
np_y = np.array([-1.2, 2., 3.3, -2.3])
|
|
|
|
|
x = paddle.to_tensor(np_x)
|
|
|
|
|
y = paddle.to_tensor(np_y)
|
|
|
|
|
z = x % y
|
|
|
|
|
z_expected = np.array([-0.9, 1.5, 1.3, -1.1])
|
|
|
|
|
self.assertEqual(np.allclose(z_expected, z.numpy()), True)
|
|
|
|
|
|
|
|
|
|
np_x = np.array([-3, 11, -2, 3])
|
|
|
|
|
np_y = np.array([-1, 2, 3, -2])
|
|
|
|
|
x = paddle.to_tensor(np_x, dtype="int64")
|
|
|
|
|
y = paddle.to_tensor(np_y, dtype="int64")
|
|
|
|
|
z = x % y
|
|
|
|
|
z_expected = np.array([0, 1, 1, -1])
|
|
|
|
|
self.assertEqual(np.allclose(z_expected, z.numpy()), True)
|
|
|
|
|
|
|
|
|
|
np_x = np.array([-3, 3])
|
|
|
|
|
np_y = np.array([[2, 3], [-2, -1]])
|
|
|
|
|
x = paddle.to_tensor(np_x, dtype="int64")
|
|
|
|
|
y = paddle.to_tensor(np_y, dtype="int64")
|
|
|
|
|
z = x % y
|
|
|
|
|
z_expected = np.array([[1, 0], [-1, 0]])
|
|
|
|
|
self.assertEqual(np.allclose(z_expected, z.numpy()), True)
|
|
|
|
|
with fluid.dygraph.guard():
|
|
|
|
|
np_x = np.array([2, 3, 8, 7]).astype('int64')
|
|
|
|
|
np_y = np.array([1, 5, 3, 3]).astype('int64')
|
|
|
|
|
x = paddle.to_tensor(np_x)
|
|
|
|
|
y = paddle.to_tensor(np_y)
|
|
|
|
|
z = paddle.remainder(x, y)
|
|
|
|
|
np_z = z.numpy()
|
|
|
|
|
z_expected = np.array([0, 3, 2, 1])
|
|
|
|
|
self.assertEqual((np_z == z_expected).all(), True)
|
|
|
|
|
|
|
|
|
|
np_x = np.array([-3.3, 11.5, -2, 3.5])
|
|
|
|
|
np_y = np.array([-1.2, 2., 3.3, -2.3])
|
|
|
|
|
x = paddle.to_tensor(np_x)
|
|
|
|
|
y = paddle.to_tensor(np_y)
|
|
|
|
|
z = x % y
|
|
|
|
|
z_expected = np.array([-0.9, 1.5, 1.3, -1.1])
|
|
|
|
|
self.assertEqual(np.allclose(z_expected, z.numpy()), True)
|
|
|
|
|
|
|
|
|
|
np_x = np.array([-3, 11, -2, 3])
|
|
|
|
|
np_y = np.array([-1, 2, 3, -2])
|
|
|
|
|
x = paddle.to_tensor(np_x, dtype="int64")
|
|
|
|
|
y = paddle.to_tensor(np_y, dtype="int64")
|
|
|
|
|
z = x % y
|
|
|
|
|
z_expected = np.array([0, 1, 1, -1])
|
|
|
|
|
self.assertEqual(np.allclose(z_expected, z.numpy()), True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|