parent
9a6e239281
commit
5d0b568ecb
@ -0,0 +1,130 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/fluid/operators/yolov3_loss_op.h"
|
||||
#include "paddle/fluid/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using framework::Tensor;
|
||||
|
||||
class Yolov3LossOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("X"),
|
||||
"Input(X) of Yolov3LossOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("GTBox"),
|
||||
"Input(GTBox) of Yolov3LossOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
||||
"Output(Out) of Yolov3LossOp should not be null.");
|
||||
|
||||
// PADDLE_ENFORCE(ctx->HasAttr("img_height"),
|
||||
// "Attr(img_height) of Yolov3LossOp should not be null. ");
|
||||
// PADDLE_ENFORCE(ctx->HasAttr("anchors"),
|
||||
// "Attr(anchor) of Yolov3LossOp should not be null.")
|
||||
// PADDLE_ENFORCE(ctx->HasAttr("class_num"),
|
||||
// "Attr(class_num) of Yolov3LossOp should not be null.");
|
||||
// PADDLE_ENFORCE(ctx->HasAttr(
|
||||
// "ignore_thresh",
|
||||
// "Attr(ignore_thresh) of Yolov3LossOp should not be null."));
|
||||
|
||||
auto dim_x = ctx->GetInputDim("X");
|
||||
auto dim_gt = ctx->GetInputDim("GTBox");
|
||||
auto img_height = ctx->Attrs().Get<int>("img_height");
|
||||
auto anchors = ctx->Attrs().Get<std::vector<int>>("anchors");
|
||||
auto box_num = ctx->Attrs().Get<int>("box_num");
|
||||
auto class_num = ctx->Attrs().Get<int>("class_num");
|
||||
PADDLE_ENFORCE_GT(img_height, 0,
|
||||
"Attr(img_height) value should be greater then 0");
|
||||
PADDLE_ENFORCE_GT(anchors.size(), 0,
|
||||
"Attr(anchors) length should be greater then 0.");
|
||||
PADDLE_ENFORCE_EQ(anchors.size() % 2, 0,
|
||||
"Attr(anchors) length should be even integer.");
|
||||
PADDLE_ENFORCE_GT(box_num, 0,
|
||||
"Attr(box_num) should be an integer greater then 0.");
|
||||
PADDLE_ENFORCE_GT(class_num, 0,
|
||||
"Attr(class_num) should be an integer greater then 0.");
|
||||
PADDLE_ENFORCE_EQ(dim_x[1], anchors.size() / 2 * (5 + class_num),
|
||||
"Input(X) dim[1] should be equal to (anchor_number * (5 "
|
||||
"+ class_num)).");
|
||||
PADDLE_ENFORCE_EQ(dim_gt.size(), 3, "Input(GTBox) should be a 3-D tensor");
|
||||
PADDLE_ENFORCE_EQ(dim_gt[2], 5, "Input(GTBox) dim[2] should be 5");
|
||||
|
||||
std::vector<int64_t> dim_out({dim_x[0], 1});
|
||||
ctx->SetOutputDim("Out", framework::make_ddim(dim_out));
|
||||
}
|
||||
|
||||
protected:
|
||||
framework::OpKernelType GetExpectedKernelType(
|
||||
const framework::ExecutionContext& ctx) const override {
|
||||
return framework::OpKernelType(
|
||||
framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace());
|
||||
}
|
||||
};
|
||||
|
||||
class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
void Make() override {
|
||||
AddInput("X",
|
||||
"The input tensor of bilinear interpolation, "
|
||||
"This is a 4-D tensor with shape of [N, C, H, W]");
|
||||
AddOutput("Out",
|
||||
"The output yolo loss tensor, "
|
||||
"This is a 2-D tensor with shape of [N, 1]");
|
||||
|
||||
AddAttr<int>("box_num", "The number of boxes generated in each grid.");
|
||||
AddAttr<int>("class_num", "The number of classes to predict.");
|
||||
AddComment(R"DOC(
|
||||
This operator generate yolov3 loss by given predict result and ground
|
||||
truth boxes.
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
class Yolov3LossOpGrad : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
|
||||
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
||||
"Input(Out@GRAD) should not be null");
|
||||
auto dim_x = ctx->GetInputDim("X");
|
||||
if (ctx->HasOutput(framework::GradVarName("X"))) {
|
||||
ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
|
||||
}
|
||||
}
|
||||
|
||||
framework::OpKernelType GetExpectedKernelType(
|
||||
const framework::ExecutionContext& ctx) const override {
|
||||
return framework::OpKernelType(
|
||||
framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace());
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OPERATOR(yolov3_loss, ops::Yolov3LossOp, ops::Yolov3LossOpMaker,
|
||||
paddle::framework::DefaultGradOpDescMaker<true>);
|
||||
REGISTER_OPERATOR(yolov3_loss_grad, ops::Yolov3LossOpGrad);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
yolov3_loss,
|
||||
ops::Yolov3LossKernel<paddle::platform::CPUDeviceContext, float>);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
yolov3_loss_grad,
|
||||
ops::Yolov3LossGradKernel<paddle::platform::CPUDeviceContext, float>);
|
@ -0,0 +1,23 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#define EIGEN_USE_GPU
|
||||
|
||||
#include "paddle/fluid/operators/yolov3_loss_op.h"
|
||||
#include "paddle/fluid/platform/cuda_primitives.h"
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_CUDA_KERNEL(
|
||||
yolov3_loss,
|
||||
ops::Yolov3LossOpKernel<paddle::platform::CUDADeviceContext, float>);
|
||||
REGISTER_OP_CUDA_KERNEL(
|
||||
yolov3_loss_grad,
|
||||
ops::Yolov3LossGradOpKernel<paddle::platform::CUDADeviceContext, float>);
|
File diff suppressed because it is too large
Load Diff
Loading…
Reference in new issue