|
|
|
@ -13,8 +13,77 @@
|
|
|
|
|
// limitations under the License.
|
|
|
|
|
|
|
|
|
|
#include "paddle/fluid/operators/reduce_ops/reduce_mean_op.h"
|
|
|
|
|
#include <memory>
|
|
|
|
|
#include <string>
|
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
|
|
REGISTER_REDUCE_OP(reduce_mean);
|
|
|
|
|
namespace paddle {
|
|
|
|
|
namespace operators {
|
|
|
|
|
|
|
|
|
|
// NOTE(dengkaipeng): Input(Out) is unnecessary in reduce_mean_grad
|
|
|
|
|
// calcualtion, but will incur a reduce_mean_grad op after
|
|
|
|
|
// reduce_mean_grad_grad, delete Input(Out) here.
|
|
|
|
|
// This change has no effect on reduce_mean_grad calculations.
|
|
|
|
|
class ReduceMeanOpGradDescMaker : public framework::SingleGradOpDescMaker {
|
|
|
|
|
public:
|
|
|
|
|
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
|
|
|
|
|
|
|
|
|
|
protected:
|
|
|
|
|
std::unique_ptr<framework::OpDesc> Apply() const override {
|
|
|
|
|
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
|
|
|
|
|
op->SetType("reduce_mean_grad");
|
|
|
|
|
op->SetInput("X", Input("X"));
|
|
|
|
|
op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
|
|
|
|
|
op->SetAttrMap(Attrs());
|
|
|
|
|
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
|
|
|
|
|
return op;
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
class ReduceMeanDoubleGradMaker : public framework::GradOpDescMakerBase {
|
|
|
|
|
public:
|
|
|
|
|
using framework::GradOpDescMakerBase::GradOpDescMakerBase;
|
|
|
|
|
|
|
|
|
|
std::vector<std::unique_ptr<framework::OpDesc>> operator()() const override {
|
|
|
|
|
std::vector<std::unique_ptr<framework::OpDesc>> ops;
|
|
|
|
|
auto x_grads = InputGrad("X");
|
|
|
|
|
auto x_gg = OutputGrad(framework::GradVarName("X")); // input ddx
|
|
|
|
|
if (!x_grads.empty()) {
|
|
|
|
|
auto* x_grad_op = new framework::OpDesc();
|
|
|
|
|
x_grad_op->SetType("scale");
|
|
|
|
|
x_grad_op->SetInput("X", x_gg);
|
|
|
|
|
x_grad_op->SetOutput("Out", x_grads);
|
|
|
|
|
x_grad_op->SetAttr("scale", 0.0f);
|
|
|
|
|
ops.emplace_back(x_grad_op);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
auto out_grads = InputGrad(framework::GradVarName("Out"));
|
|
|
|
|
if (!out_grads.empty()) {
|
|
|
|
|
auto* out_grad_op = new framework::OpDesc();
|
|
|
|
|
out_grad_op->SetType("reduce_mean");
|
|
|
|
|
out_grad_op->SetInput("X", x_gg);
|
|
|
|
|
out_grad_op->SetAttrMap(Attrs());
|
|
|
|
|
out_grad_op->SetOutput("Out", out_grads);
|
|
|
|
|
ops.emplace_back(out_grad_op);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return ops;
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
} // namespace operators
|
|
|
|
|
} // namespace paddle
|
|
|
|
|
|
|
|
|
|
class __reduce_meanMaker__ : public ops::ReduceOpMaker {
|
|
|
|
|
protected:
|
|
|
|
|
virtual std::string GetName() const { return "reduce_mean"; }
|
|
|
|
|
virtual std::string GetOpType() const { return "Reduce reduce_mean"; }
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
REGISTER_OPERATOR(reduce_mean, ops::ReduceOp, __reduce_meanMaker__,
|
|
|
|
|
ops::ReduceMeanOpGradDescMaker);
|
|
|
|
|
REGISTER_OPERATOR(reduce_mean_grad, ops::ReduceGradOp,
|
|
|
|
|
ops::ReduceMeanDoubleGradMaker);
|
|
|
|
|
REGISTER_OP_CPU_KERNEL(reduce_mean,
|
|
|
|
|
ops::ReduceKernel<paddle::platform::CPUDeviceContext,
|
|
|
|
|
float, ops::MeanFunctor>,
|
|
|
|
|