|
|
|
@ -18,8 +18,9 @@ import sys
|
|
|
|
|
from paddle.trainer_config_helpers import *
|
|
|
|
|
|
|
|
|
|
#file paths
|
|
|
|
|
word_dict_file = './data/src.dict'
|
|
|
|
|
label_dict_file = './data/tgt.dict'
|
|
|
|
|
word_dict_file = './data/wordDict.txt'
|
|
|
|
|
label_dict_file = './data/targetDict.txt'
|
|
|
|
|
predicate_file= './data/verbDict.txt'
|
|
|
|
|
train_list_file = './data/train.list'
|
|
|
|
|
test_list_file = './data/test.list'
|
|
|
|
|
|
|
|
|
@ -30,8 +31,10 @@ if not is_predict:
|
|
|
|
|
#load dictionaries
|
|
|
|
|
word_dict = dict()
|
|
|
|
|
label_dict = dict()
|
|
|
|
|
predicate_dict = dict()
|
|
|
|
|
with open(word_dict_file, 'r') as f_word, \
|
|
|
|
|
open(label_dict_file, 'r') as f_label:
|
|
|
|
|
open(label_dict_file, 'r') as f_label, \
|
|
|
|
|
open(predicate_file, 'r') as f_pre:
|
|
|
|
|
for i, line in enumerate(f_word):
|
|
|
|
|
w = line.strip()
|
|
|
|
|
word_dict[w] = i
|
|
|
|
@ -40,6 +43,11 @@ if not is_predict:
|
|
|
|
|
w = line.strip()
|
|
|
|
|
label_dict[w] = i
|
|
|
|
|
|
|
|
|
|
for i, line in enumerate(f_pre):
|
|
|
|
|
w = line.strip()
|
|
|
|
|
predicate_dict[w] = i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if is_test:
|
|
|
|
|
train_list_file = None
|
|
|
|
|
|
|
|
|
@ -50,91 +58,157 @@ if not is_predict:
|
|
|
|
|
module='dataprovider',
|
|
|
|
|
obj='process',
|
|
|
|
|
args={'word_dict': word_dict,
|
|
|
|
|
'label_dict': label_dict})
|
|
|
|
|
'label_dict': label_dict,
|
|
|
|
|
'predicate_dict': predicate_dict })
|
|
|
|
|
|
|
|
|
|
word_dict_len = len(word_dict)
|
|
|
|
|
label_dict_len = len(label_dict)
|
|
|
|
|
pred_len = len(predicate_dict)
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
word_dict_len = get_config_arg('dict_len', int)
|
|
|
|
|
label_dict_len = get_config_arg('label_len', int)
|
|
|
|
|
pred_len = get_config_arg('pred_len', int)
|
|
|
|
|
|
|
|
|
|
############################## Hyper-parameters ##################################
|
|
|
|
|
mark_dict_len = 2
|
|
|
|
|
word_dim = 32
|
|
|
|
|
mark_dim = 5
|
|
|
|
|
hidden_dim = 128
|
|
|
|
|
hidden_dim = 512
|
|
|
|
|
depth = 8
|
|
|
|
|
emb_lr = 1e-2
|
|
|
|
|
fc_lr = 1e-2
|
|
|
|
|
lstm_lr = 2e-2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
########################### Optimizer #######################################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
settings(
|
|
|
|
|
batch_size=150,
|
|
|
|
|
learning_method=AdamOptimizer(),
|
|
|
|
|
learning_rate=1e-3,
|
|
|
|
|
learning_method=MomentumOptimizer(momentum=0),
|
|
|
|
|
learning_rate=2e-2,
|
|
|
|
|
regularization=L2Regularization(8e-4),
|
|
|
|
|
gradient_clipping_threshold=25)
|
|
|
|
|
is_async=False,
|
|
|
|
|
model_average=ModelAverage(average_window=0.5,
|
|
|
|
|
max_average_window=10000),
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
#6 features
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
####################################### network ##############################
|
|
|
|
|
#8 features and 1 target
|
|
|
|
|
word = data_layer(name='word_data', size=word_dict_len)
|
|
|
|
|
predicate = data_layer(name='verb_data', size=word_dict_len)
|
|
|
|
|
predicate = data_layer(name='verb_data', size=pred_len)
|
|
|
|
|
|
|
|
|
|
ctx_n2 = data_layer(name='ctx_n2_data', size=word_dict_len)
|
|
|
|
|
ctx_n1 = data_layer(name='ctx_n1_data', size=word_dict_len)
|
|
|
|
|
ctx_0 = data_layer(name='ctx_0_data', size=word_dict_len)
|
|
|
|
|
ctx_p1 = data_layer(name='ctx_p1_data', size=word_dict_len)
|
|
|
|
|
ctx_p2 = data_layer(name='ctx_p2_data', size=word_dict_len)
|
|
|
|
|
mark = data_layer(name='mark_data', size=mark_dict_len)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if not is_predict:
|
|
|
|
|
target = data_layer(name='target', size=label_dict_len)
|
|
|
|
|
|
|
|
|
|
ptt = ParameterAttribute(name='src_emb', learning_rate=emb_lr)
|
|
|
|
|
layer_attr = ExtraLayerAttribute(drop_rate=0.5)
|
|
|
|
|
fc_para_attr = ParameterAttribute(learning_rate=fc_lr)
|
|
|
|
|
lstm_para_attr = ParameterAttribute(initial_std=0., learning_rate=lstm_lr)
|
|
|
|
|
para_attr = [fc_para_attr, lstm_para_attr]
|
|
|
|
|
|
|
|
|
|
word_embedding = embedding_layer(size=word_dim, input=word, param_attr=ptt)
|
|
|
|
|
predicate_embedding = embedding_layer(
|
|
|
|
|
size=word_dim, input=predicate, param_attr=ptt)
|
|
|
|
|
ctx_n1_embedding = embedding_layer(size=word_dim, input=ctx_n1, param_attr=ptt)
|
|
|
|
|
ctx_0_embedding = embedding_layer(size=word_dim, input=ctx_0, param_attr=ptt)
|
|
|
|
|
ctx_p1_embedding = embedding_layer(size=word_dim, input=ctx_p1, param_attr=ptt)
|
|
|
|
|
mark_embedding = embedding_layer(size=mark_dim, input=mark)
|
|
|
|
|
default_std=1/math.sqrt(hidden_dim)/3.0
|
|
|
|
|
|
|
|
|
|
emb_para = ParameterAttribute(name='emb', initial_std=0., learning_rate=0.)
|
|
|
|
|
std_0 = ParameterAttribute(initial_std=0.)
|
|
|
|
|
std_default = ParameterAttribute(initial_std=default_std)
|
|
|
|
|
|
|
|
|
|
predicate_embedding = embedding_layer(size=word_dim, input=predicate, param_attr=ParameterAttribute(name='vemb',initial_std=default_std))
|
|
|
|
|
mark_embedding = embedding_layer(name='word_ctx-in_embedding', size=mark_dim, input=mark, param_attr=std_0)
|
|
|
|
|
|
|
|
|
|
word_input=[word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
|
|
|
|
|
emb_layers = [embedding_layer(size=word_dim, input=x, param_attr=emb_para) for x in word_input]
|
|
|
|
|
emb_layers.append(predicate_embedding)
|
|
|
|
|
emb_layers.append(mark_embedding)
|
|
|
|
|
|
|
|
|
|
hidden_0 = mixed_layer(
|
|
|
|
|
name='hidden0',
|
|
|
|
|
size=hidden_dim,
|
|
|
|
|
input=[
|
|
|
|
|
full_matrix_projection(input=word_embedding),
|
|
|
|
|
full_matrix_projection(input=predicate_embedding),
|
|
|
|
|
full_matrix_projection(input=ctx_n1_embedding),
|
|
|
|
|
full_matrix_projection(input=ctx_0_embedding),
|
|
|
|
|
full_matrix_projection(input=ctx_p1_embedding),
|
|
|
|
|
full_matrix_projection(input=mark_embedding),
|
|
|
|
|
])
|
|
|
|
|
bias_attr=std_default,
|
|
|
|
|
input=[ full_matrix_projection(input=emb, param_attr=std_default ) for emb in emb_layers ])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lstm_0 = lstmemory(input=hidden_0, layer_attr=layer_attr)
|
|
|
|
|
mix_hidden_lr = 1e-3
|
|
|
|
|
lstm_para_attr = ParameterAttribute(initial_std=0.0, learning_rate=1.0)
|
|
|
|
|
hidden_para_attr = ParameterAttribute(initial_std=default_std, learning_rate=mix_hidden_lr)
|
|
|
|
|
|
|
|
|
|
lstm_0 = lstmemory(name='lstm0',
|
|
|
|
|
input=hidden_0,
|
|
|
|
|
act=ReluActivation(),
|
|
|
|
|
gate_act=SigmoidActivation(),
|
|
|
|
|
state_act=SigmoidActivation(),
|
|
|
|
|
bias_attr=std_0,
|
|
|
|
|
param_attr=lstm_para_attr)
|
|
|
|
|
|
|
|
|
|
#stack L-LSTM and R-LSTM with direct edges
|
|
|
|
|
input_tmp = [hidden_0, lstm_0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for i in range(1, depth):
|
|
|
|
|
|
|
|
|
|
fc = fc_layer(input=input_tmp, size=hidden_dim, param_attr=para_attr)
|
|
|
|
|
mix_hidden = mixed_layer(name='hidden'+str(i),
|
|
|
|
|
size=hidden_dim,
|
|
|
|
|
bias_attr=std_default,
|
|
|
|
|
input=[full_matrix_projection(input=input_tmp[0], param_attr=hidden_para_attr),
|
|
|
|
|
full_matrix_projection(input=input_tmp[1], param_attr=lstm_para_attr)
|
|
|
|
|
]
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
lstm = lstmemory(name='lstm'+str(i),
|
|
|
|
|
input=mix_hidden,
|
|
|
|
|
act=ReluActivation(),
|
|
|
|
|
gate_act=SigmoidActivation(),
|
|
|
|
|
state_act=SigmoidActivation(),
|
|
|
|
|
reverse=((i % 2)==1),
|
|
|
|
|
bias_attr=std_0,
|
|
|
|
|
param_attr=lstm_para_attr)
|
|
|
|
|
|
|
|
|
|
input_tmp = [mix_hidden, lstm]
|
|
|
|
|
|
|
|
|
|
feature_out = mixed_layer(name='output',
|
|
|
|
|
size=label_dict_len,
|
|
|
|
|
bias_attr=std_default,
|
|
|
|
|
input=[full_matrix_projection(input=input_tmp[0], param_attr=hidden_para_attr),
|
|
|
|
|
full_matrix_projection(input=input_tmp[1], param_attr=lstm_para_attr)
|
|
|
|
|
],
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
lstm = lstmemory(
|
|
|
|
|
input=fc,
|
|
|
|
|
act=ReluActivation(),
|
|
|
|
|
reverse=(i % 2) == 1,
|
|
|
|
|
layer_attr=layer_attr)
|
|
|
|
|
input_tmp = [fc, lstm]
|
|
|
|
|
|
|
|
|
|
prob = fc_layer(
|
|
|
|
|
input=input_tmp,
|
|
|
|
|
size=label_dict_len,
|
|
|
|
|
act=SoftmaxActivation(),
|
|
|
|
|
param_attr=para_attr)
|
|
|
|
|
|
|
|
|
|
if not is_predict:
|
|
|
|
|
cls = classification_cost(input=prob, label=target)
|
|
|
|
|
outputs(cls)
|
|
|
|
|
crf_l = crf_layer( name = 'crf',
|
|
|
|
|
size = label_dict_len,
|
|
|
|
|
input = feature_out,
|
|
|
|
|
label = target,
|
|
|
|
|
param_attr=ParameterAttribute(name='crfw',initial_std=default_std, learning_rate=mix_hidden_lr)
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
crf_dec_l = crf_decoding_layer(name = 'crf_dec_l',
|
|
|
|
|
size = label_dict_len,
|
|
|
|
|
input = feature_out,
|
|
|
|
|
label = target,
|
|
|
|
|
param_attr=ParameterAttribute(name='crfw')
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eval = sum_evaluator(input=crf_dec_l)
|
|
|
|
|
|
|
|
|
|
outputs(crf_l)
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
outputs(prob)
|
|
|
|
|
crf_dec_l = crf_decoding_layer(name = 'crf_dec_l',
|
|
|
|
|
size = label_dict_len,
|
|
|
|
|
input = feature_out,
|
|
|
|
|
param_attr=ParameterAttribute(name='crfw')
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
outputs(crf_dec_l)
|
|
|
|
|
|
|
|
|
|