|
|
|
@ -149,17 +149,20 @@ class TestWeightDecay(unittest.TestCase):
|
|
|
|
|
|
|
|
|
|
avg_cost = model(data, label, self.word_dict_len)
|
|
|
|
|
|
|
|
|
|
optimizer = fluid.optimizer.Adam(learning_rate=self.learning_rate)
|
|
|
|
|
|
|
|
|
|
params_grads = optimizer.backward(avg_cost)
|
|
|
|
|
|
|
|
|
|
param_list = [(var, var * self.learning_rate)
|
|
|
|
|
for var in main_prog.block(0).all_parameters()]
|
|
|
|
|
|
|
|
|
|
optimizer = fluid.optimizer.Adam(learning_rate=self.learning_rate)
|
|
|
|
|
|
|
|
|
|
optimizer.minimize(avg_cost)
|
|
|
|
|
for params in param_list:
|
|
|
|
|
updated_p = fluid.layers.elementwise_sub(
|
|
|
|
|
x=params[0], y=params[1])
|
|
|
|
|
fluid.layers.assign(input=updated_p, output=params[0])
|
|
|
|
|
|
|
|
|
|
optimizer.apply_optimize(avg_cost, startup_prog, params_grads)
|
|
|
|
|
|
|
|
|
|
param_sum = self.run_program(place, [data, label])
|
|
|
|
|
return param_sum
|
|
|
|
|
|
|
|
|
|