|
|
|
@ -243,25 +243,42 @@ class EditDistance(Evaluator):
|
|
|
|
|
if main_program.current_block().idx != 0:
|
|
|
|
|
raise ValueError("You can only invoke Evaluator in root block")
|
|
|
|
|
|
|
|
|
|
self.total_error = self.create_state(
|
|
|
|
|
dtype='float32', shape=[1], suffix='total_error')
|
|
|
|
|
self.total_distance = self.create_state(
|
|
|
|
|
dtype='float32', shape=[1], suffix='total_distance')
|
|
|
|
|
self.seq_num = self.create_state(
|
|
|
|
|
dtype='int64', shape=[1], suffix='seq_num')
|
|
|
|
|
error, seq_num = layers.edit_distance(
|
|
|
|
|
self.seq_error = self.create_state(
|
|
|
|
|
dtype='int64', shape=[1], suffix='seq_error')
|
|
|
|
|
distances, seq_num = layers.edit_distance(
|
|
|
|
|
input=input, label=label, ignored_tokens=ignored_tokens)
|
|
|
|
|
|
|
|
|
|
zero = layers.fill_constant(shape=[1], value=0.0, dtype='float32')
|
|
|
|
|
compare_result = layers.equal(distances, zero)
|
|
|
|
|
compare_result_int = layers.cast(x=compare_result, dtype='int')
|
|
|
|
|
seq_right_count = layers.reduce_sum(compare_result_int)
|
|
|
|
|
seq_error_count = layers.elementwise_sub(x=seq_num, y=seq_right_count)
|
|
|
|
|
#error = layers.cast(x=error, dtype='float32')
|
|
|
|
|
sum_error = layers.reduce_sum(error)
|
|
|
|
|
layers.sums(input=[self.total_error, sum_error], out=self.total_error)
|
|
|
|
|
total_distance = layers.reduce_sum(distances)
|
|
|
|
|
layers.sums(
|
|
|
|
|
input=[self.total_distance, total_distance],
|
|
|
|
|
out=self.total_distance)
|
|
|
|
|
layers.sums(input=[self.seq_num, seq_num], out=self.seq_num)
|
|
|
|
|
self.metrics.append(sum_error)
|
|
|
|
|
layers.sums(input=[self.seq_error, seq_error_count], out=self.seq_error)
|
|
|
|
|
self.metrics.append(total_distance)
|
|
|
|
|
self.metrics.append(seq_error_count)
|
|
|
|
|
|
|
|
|
|
def eval(self, executor, eval_program=None):
|
|
|
|
|
if eval_program is None:
|
|
|
|
|
eval_program = Program()
|
|
|
|
|
block = eval_program.current_block()
|
|
|
|
|
with program_guard(main_program=eval_program):
|
|
|
|
|
total_error = _clone_var_(block, self.total_error)
|
|
|
|
|
total_distance = _clone_var_(block, self.total_distance)
|
|
|
|
|
seq_num = _clone_var_(block, self.seq_num)
|
|
|
|
|
seq_error = _clone_var_(block, self.seq_error)
|
|
|
|
|
seq_num = layers.cast(x=seq_num, dtype='float32')
|
|
|
|
|
out = layers.elementwise_div(x=total_error, y=seq_num)
|
|
|
|
|
return np.array(executor.run(eval_program, fetch_list=[out])[0])
|
|
|
|
|
seq_error = layers.cast(x=seq_error, dtype='float32')
|
|
|
|
|
avg_distance = layers.elementwise_div(x=total_distance, y=seq_num)
|
|
|
|
|
avg_seq_error = layers.elementwise_div(x=seq_error, y=seq_num)
|
|
|
|
|
result = executor.run(eval_program,
|
|
|
|
|
fetch_list=[avg_distance, avg_seq_error])
|
|
|
|
|
return np.array(result[0]), np.array(result[1])
|
|
|
|
|