add a new interface _prune_with_input (#20022)
* add a default value for _prune interface * modify documentfix-python-transpose
parent
6f184775e8
commit
5e99f31b7e
@ -0,0 +1,100 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
|
||||
import paddle.fluid as fluid
|
||||
import paddle.fluid.framework as framework
|
||||
import paddle.compat as cpt
|
||||
|
||||
|
||||
class TestPrune(unittest.TestCase):
|
||||
def net(self):
|
||||
x = fluid.layers.data(name='x', shape=[2], dtype='float32')
|
||||
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
|
||||
y = fluid.layers.fc(input=[x], size=2, act="softmax")
|
||||
loss = fluid.layers.cross_entropy(input=y, label=label)
|
||||
loss = fluid.layers.mean(x=loss)
|
||||
return x, y, label, loss
|
||||
|
||||
def test_prune_with_input(self):
|
||||
program = framework.Program()
|
||||
startup_program = framework.Program()
|
||||
block = program.global_block()
|
||||
with fluid.program_guard(program, startup_program):
|
||||
(x, y, label, loss) = self.net()
|
||||
self.assertEqual(len(block.ops), 5)
|
||||
self.assertEqual([op.type for op in block.ops], [
|
||||
"mul", "elementwise_add", "softmax", "cross_entropy2", "mean"
|
||||
])
|
||||
pruned_program = program._prune_with_input(
|
||||
feeded_var_names=[y.name, label.name], targets=[loss])
|
||||
self.assertEqual(len(pruned_program.global_block().ops), 2)
|
||||
self.assertEqual([op.type for op in pruned_program.global_block().ops],
|
||||
["cross_entropy2", "mean"])
|
||||
|
||||
def test_prune(self):
|
||||
program = framework.Program()
|
||||
startup_program = framework.Program()
|
||||
block = program.global_block()
|
||||
with fluid.program_guard(program, startup_program):
|
||||
(x, y, label, loss) = self.net()
|
||||
self.assertEqual(len(block.ops), 5)
|
||||
self.assertEqual([op.type for op in block.ops], [
|
||||
"mul", "elementwise_add", "softmax", "cross_entropy2", "mean"
|
||||
])
|
||||
pruned_program = program._prune(targets=[loss])
|
||||
self.assertEqual(len(pruned_program.global_block().ops), 5)
|
||||
self.assertEqual(
|
||||
[op.type for op in pruned_program.global_block().ops],
|
||||
["mul", "elementwise_add", "softmax", "cross_entropy2", "mean"])
|
||||
|
||||
def test_prune_target_not_list(self):
|
||||
program = framework.Program()
|
||||
startup_program = framework.Program()
|
||||
block = program.global_block()
|
||||
with fluid.program_guard(program, startup_program):
|
||||
(x, y, label, loss) = self.net()
|
||||
self.assertEqual(len(block.ops), 5)
|
||||
self.assertEqual([op.type for op in block.ops], [
|
||||
"mul", "elementwise_add", "softmax", "cross_entropy2", "mean"
|
||||
])
|
||||
pruned_program = program._prune(targets=loss)
|
||||
self.assertEqual(len(pruned_program.global_block().ops), 5)
|
||||
self.assertEqual(
|
||||
[op.type for op in pruned_program.global_block().ops],
|
||||
["mul", "elementwise_add", "softmax", "cross_entropy2", "mean"])
|
||||
|
||||
def test_prune_target_none(self):
|
||||
program = framework.Program()
|
||||
startup_program = framework.Program()
|
||||
block = program.global_block()
|
||||
with fluid.program_guard(program, startup_program):
|
||||
(x, y, label, loss) = self.net()
|
||||
self.assertEqual(len(block.ops), 5)
|
||||
self.assertEqual([op.type for op in block.ops], [
|
||||
"mul", "elementwise_add", "softmax", "cross_entropy2", "mean"
|
||||
])
|
||||
try:
|
||||
pruned_program = program._prune(targets=None)
|
||||
except ValueError as e:
|
||||
self.assertEqual(
|
||||
"All targets of prune() can only be Variable or Operator.",
|
||||
cpt.get_exception_message(e))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue