|
|
|
@ -15,7 +15,7 @@
|
|
|
|
|
from __future__ import print_function
|
|
|
|
|
import unittest
|
|
|
|
|
import numpy as np
|
|
|
|
|
from op_test import OpTest
|
|
|
|
|
from op_test import OpTest, skip_check_grad_ci
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_output_shape(attrs, in_shape, img_real_size):
|
|
|
|
@ -142,7 +142,6 @@ class TestBlockExpandOp(OpTest):
|
|
|
|
|
x = np.random.uniform(0.1, 1, [
|
|
|
|
|
self.batch_size, self.img_channels, self.img_height, self.img_width
|
|
|
|
|
]).astype("float32")
|
|
|
|
|
|
|
|
|
|
real_size = np.array([]).astype("float32")
|
|
|
|
|
out = Im2Sequence(x, real_size, self.attrs)
|
|
|
|
|
self.inputs = {'X': x}
|
|
|
|
@ -194,6 +193,9 @@ class TestBlockExpandOpCase4(TestBlockExpandOp):
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@skip_check_grad_ci(
|
|
|
|
|
reason="Since 'real_size' is used just in forward computation, we don't test the gradient here."
|
|
|
|
|
)
|
|
|
|
|
class TestBlockExpandOpCase5(OpTest):
|
|
|
|
|
def config(self):
|
|
|
|
|
self.batch_size = 1
|
|
|
|
@ -206,6 +208,7 @@ class TestBlockExpandOpCase5(OpTest):
|
|
|
|
|
'paddings': [2, 1, 2, 1],
|
|
|
|
|
'out_stride': [2, 2],
|
|
|
|
|
}
|
|
|
|
|
self.real_size = np.array([[8, 10], [5, 8]]).astype("float32")
|
|
|
|
|
|
|
|
|
|
def setUp(self):
|
|
|
|
|
self.config()
|
|
|
|
@ -213,16 +216,15 @@ class TestBlockExpandOpCase5(OpTest):
|
|
|
|
|
x = np.random.uniform(0.1, 1, [
|
|
|
|
|
self.batch_size, self.img_channels, self.img_height, self.img_width
|
|
|
|
|
]).astype("float32")
|
|
|
|
|
real_size = np.array([[8, 10], [5, 8]]).astype("float32")
|
|
|
|
|
out = np.array(Im2Sequence(x, real_size, self.attrs))
|
|
|
|
|
self.inputs = {'X': x, 'Y': real_size} #l ??
|
|
|
|
|
out = np.array(Im2Sequence(x, self.real_size, self.attrs))
|
|
|
|
|
self.inputs = {'X': x, 'Y': self.real_size}
|
|
|
|
|
self.outputs = {'Out': out}
|
|
|
|
|
|
|
|
|
|
def test_check_output(self):
|
|
|
|
|
self.check_output()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestBlockExpandOpCase6(OpTest):
|
|
|
|
|
class TestBlockExpandOpCase6(TestBlockExpandOpCase5):
|
|
|
|
|
def config(self):
|
|
|
|
|
self.batch_size = 3
|
|
|
|
|
self.img_channels = 1
|
|
|
|
@ -234,23 +236,10 @@ class TestBlockExpandOpCase6(OpTest):
|
|
|
|
|
'paddings': [0, 0, 0, 0],
|
|
|
|
|
'out_stride': [1, 1],
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
def setUp(self):
|
|
|
|
|
self.config()
|
|
|
|
|
self.op_type = "im2sequence"
|
|
|
|
|
x = np.random.uniform(0.1, 1, [
|
|
|
|
|
self.batch_size, self.img_channels, self.img_height, self.img_width
|
|
|
|
|
]).astype("float32")
|
|
|
|
|
real_size = np.array([[8, 10], [5, 8], [5, 8]]).astype("float32")
|
|
|
|
|
out = np.array(Im2Sequence(x, real_size, self.attrs))
|
|
|
|
|
self.inputs = {'X': x, 'Y': real_size} #l ??
|
|
|
|
|
self.outputs = {'Out': out}
|
|
|
|
|
|
|
|
|
|
def test_check_output(self):
|
|
|
|
|
self.check_output()
|
|
|
|
|
self.real_size = np.array([[8, 10], [5, 8], [5, 8]]).astype("float32")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestBlockExpandOpCase7(OpTest):
|
|
|
|
|
class TestBlockExpandOpCase7(TestBlockExpandOpCase6):
|
|
|
|
|
def config(self):
|
|
|
|
|
self.batch_size = 2
|
|
|
|
|
self.img_channels = 2
|
|
|
|
@ -262,22 +251,8 @@ class TestBlockExpandOpCase7(OpTest):
|
|
|
|
|
'paddings': [1, 0, 1, 0],
|
|
|
|
|
'out_stride': [2, 2],
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
def setUp(self):
|
|
|
|
|
self.config()
|
|
|
|
|
self.op_type = "im2sequence"
|
|
|
|
|
x = np.random.uniform(0.1, 1, [
|
|
|
|
|
self.batch_size, self.img_channels, self.img_height, self.img_width
|
|
|
|
|
]).astype("float32")
|
|
|
|
|
real_size = np.array([[6, 6], [4, 4]]).astype("float32")
|
|
|
|
|
out = np.array(Im2Sequence(x, real_size, self.attrs))
|
|
|
|
|
self.inputs = {'X': x, 'Y': real_size}
|
|
|
|
|
self.outputs = {'Out': out}
|
|
|
|
|
|
|
|
|
|
def test_check_output(self):
|
|
|
|
|
self.check_output()
|
|
|
|
|
self.real_size = np.array([[6, 6], [4, 4]]).astype("float32")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
unittest.main()
|
|
|
|
|
#set shiftwidth=4 set expandtab set tabstop=4
|
|
|
|
|