Merge pull request #15716 from Yancey1989/refine_pg
Refine ParallelGraph Executionrevert-15774-anakin_subgraph_engine
commit
6019054cdd
@ -0,0 +1,107 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import os
|
||||
os.environ['FLAGS_enable_parallel_graph'] = str(1)
|
||||
import paddle.fluid.core as core
|
||||
import os
|
||||
import paddle.fluid as fluid
|
||||
from parallel_executor_test_base import TestParallelExecutorBase
|
||||
|
||||
|
||||
def simple_fc_net(use_feed):
|
||||
img = fluid.layers.data(name='image', shape=[784], dtype='float32')
|
||||
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
||||
hidden = img
|
||||
for _ in range(4):
|
||||
hidden = fluid.layers.fc(
|
||||
hidden,
|
||||
size=200,
|
||||
act='tanh',
|
||||
bias_attr=fluid.ParamAttr(
|
||||
initializer=fluid.initializer.Constant(value=1.0)))
|
||||
prediction = fluid.layers.fc(hidden, size=10, act='softmax')
|
||||
loss = fluid.layers.cross_entropy(input=prediction, label=label)
|
||||
loss = fluid.layers.mean(loss)
|
||||
return loss
|
||||
|
||||
|
||||
class TestMNIST(TestParallelExecutorBase):
|
||||
@classmethod
|
||||
def setUpClass(cls):
|
||||
os.environ['CPU_NUM'] = str(4)
|
||||
|
||||
def _init_data(self):
|
||||
np.random.seed(5)
|
||||
img = np.random.random(size=[32, 784]).astype(np.float32)
|
||||
label = np.ones(shape=[32, 1], dtype='int64')
|
||||
return img, label
|
||||
|
||||
# simple_fc
|
||||
def check_simple_fc_convergence(self, use_cuda, use_reduce=False):
|
||||
if use_cuda and not core.is_compiled_with_cuda():
|
||||
return
|
||||
|
||||
img, label = self._init_data()
|
||||
|
||||
self.check_network_convergence(
|
||||
simple_fc_net,
|
||||
feed_dict={"image": img,
|
||||
"label": label},
|
||||
use_cuda=use_cuda,
|
||||
use_reduce=use_reduce)
|
||||
|
||||
def test_simple_fc(self):
|
||||
# use_cuda
|
||||
self.check_simple_fc_convergence(True)
|
||||
|
||||
def check_simple_fc_parallel_accuracy(self, use_cuda):
|
||||
if use_cuda and not core.is_compiled_with_cuda():
|
||||
return
|
||||
|
||||
img, label = self._init_data()
|
||||
|
||||
single_first_loss, single_last_loss = self.check_network_convergence(
|
||||
method=simple_fc_net,
|
||||
seed=1,
|
||||
feed_dict={"image": img,
|
||||
"label": label},
|
||||
use_cuda=use_cuda,
|
||||
use_parallel_executor=False)
|
||||
parallel_first_loss, parallel_last_loss = self.check_network_convergence(
|
||||
method=simple_fc_net,
|
||||
seed=1,
|
||||
feed_dict={"image": img,
|
||||
"label": label},
|
||||
use_cuda=use_cuda,
|
||||
use_parallel_executor=True)
|
||||
|
||||
self.assertAlmostEquals(
|
||||
np.mean(parallel_first_loss),
|
||||
single_first_loss,
|
||||
delta=1e-6, )
|
||||
self.assertAlmostEquals(
|
||||
np.mean(parallel_last_loss), single_last_loss, delta=1e-6)
|
||||
|
||||
def test_simple_fc_parallel_accuracy(self):
|
||||
self.check_simple_fc_parallel_accuracy(True)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue