commit
601e2317fd
@ -1,109 +0,0 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/rowwise_add_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using framework::Tensor;
|
||||
|
||||
class RowwiseAddOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(framework::InferShapeContextBase* ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("X"),
|
||||
"Input(X) of RowwiseAddOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("b"),
|
||||
"Input(b) of RowwiseAddOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
||||
"Output(Out) of RowwiseAddOp should not be null.");
|
||||
|
||||
auto x_dims = ctx->GetInputDim("X");
|
||||
auto b_dims = ctx->GetInputDim("b");
|
||||
PADDLE_ENFORCE_GT(
|
||||
x_dims.size(), b_dims.size(),
|
||||
"The rank of input `X` must be larger than the one of input `b`.");
|
||||
|
||||
int num_col_dims = x_dims.size() - b_dims.size();
|
||||
|
||||
PADDLE_ENFORCE_EQ(
|
||||
framework::slice_ddim(x_dims, num_col_dims, x_dims.size()), b_dims,
|
||||
"The width of two operands must be same");
|
||||
PADDLE_ENFORCE_EQ(ctx->Outputs("Out").size(), 1,
|
||||
"The output size must be 1");
|
||||
ctx->SetOutputDim("Out", x_dims);
|
||||
ctx->ShareLoD("X", /*->*/ "Out");
|
||||
}
|
||||
};
|
||||
|
||||
class RowwiseAddOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
RowwiseAddOpMaker(framework::OpProto* proto,
|
||||
framework::OpAttrChecker* op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("X", "The left input of row-wise add op, must be matrix");
|
||||
AddInput("b", "The right input of row-wise add op, must be vector");
|
||||
AddOutput("Out", "The output of row-wise add op");
|
||||
AddComment(R"DOC(Row-wise Add operator
|
||||
|
||||
for i in xrange(X.shape[0]):
|
||||
Out = X[i] + b
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
class RowwiseAddGradOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(framework::InferShapeContextBase* ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("X"), "X should not be null");
|
||||
PADDLE_ENFORCE(ctx->HasInput("b"), "b should not be null");
|
||||
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
||||
"Input(Out@GRAD) should not be null");
|
||||
auto x_dims = ctx->GetInputDim("X");
|
||||
auto b_dims = ctx->GetInputDim("b");
|
||||
PADDLE_ENFORCE_GT(
|
||||
x_dims.size(), b_dims.size(),
|
||||
"The rank of input `X` must be larger than the one of input `b`.");
|
||||
|
||||
int64_t num_col_dims = x_dims.size() - b_dims.size();
|
||||
PADDLE_ENFORCE_EQ(
|
||||
framework::slice_ddim(x_dims, num_col_dims, x_dims.size()), b_dims,
|
||||
"The width of two operands must be same");
|
||||
auto x_grad_name = framework::GradVarName("X");
|
||||
auto b_grad_name = framework::GradVarName("b");
|
||||
if (ctx->HasOutput(x_grad_name)) {
|
||||
ctx->SetOutputDim(x_grad_name, x_dims);
|
||||
}
|
||||
if (ctx->HasOutput(b_grad_name)) {
|
||||
ctx->SetOutputDim(b_grad_name, b_dims);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP(rowwise_add, ops::RowwiseAddOp, ops::RowwiseAddOpMaker,
|
||||
rowwise_add_grad, ops::RowwiseAddGradOp);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
rowwise_add, ops::RowwiseAddKernel<paddle::platform::CPUPlace, float>);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
rowwise_add_grad,
|
||||
ops::RowwiseAddGradKernel<paddle::platform::CPUPlace, float>);
|
@ -1,23 +0,0 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#define EIGEN_USE_GPU
|
||||
#include "paddle/operators/rowwise_add_op.h"
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_GPU_KERNEL(
|
||||
rowwise_add, ops::RowwiseAddKernel<paddle::platform::GPUPlace, float>);
|
||||
REGISTER_OP_GPU_KERNEL(
|
||||
rowwise_add_grad,
|
||||
ops::RowwiseAddGradKernel<paddle::platform::GPUPlace, float>);
|
@ -1,80 +0,0 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include "paddle/framework/eigen.h"
|
||||
#include "paddle/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using Tensor = framework::Tensor;
|
||||
template <typename T, int MajorType = Eigen::RowMajor,
|
||||
typename IndexType = Eigen::DenseIndex>
|
||||
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
|
||||
template <typename T, int MajorType = Eigen::RowMajor,
|
||||
typename IndexType = Eigen::DenseIndex>
|
||||
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
|
||||
|
||||
template <typename Place, typename T>
|
||||
class RowwiseAddKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
auto out = context.Output<Tensor>("Out");
|
||||
out->mutable_data<T>(context.GetPlace());
|
||||
int num_col_dims = context.Input<Tensor>("X")->dims().size() -
|
||||
context.Input<Tensor>("b")->dims().size();
|
||||
auto input =
|
||||
EigenMatrix<T>::Reshape(*context.Input<Tensor>("X"), num_col_dims);
|
||||
auto bias = EigenVector<T>::Flatten(*context.Input<Tensor>("b"));
|
||||
auto output = EigenMatrix<T>::Reshape(*out, num_col_dims);
|
||||
|
||||
const int bias_size = bias.dimension(0);
|
||||
const int rest_size = input.size() / bias_size;
|
||||
Eigen::DSizes<int, 1> one_d(input.size());
|
||||
Eigen::DSizes<int, 1> bcast(rest_size);
|
||||
output.reshape(one_d).device(context.GetEigenDevice<Place>()) =
|
||||
input.reshape(one_d) + bias.broadcast(bcast).reshape(one_d);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Place, typename T>
|
||||
class RowwiseAddGradKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
auto* dout = context.Input<Tensor>(framework::GradVarName("Out"));
|
||||
auto* dx = context.Output<Tensor>(framework::GradVarName("X"));
|
||||
auto* db = context.Output<Tensor>(framework::GradVarName("b"));
|
||||
int num_col_dims = context.Input<Tensor>("X")->dims().size() -
|
||||
context.Input<Tensor>("b")->dims().size();
|
||||
|
||||
auto out_grad = EigenMatrix<T>::Reshape(*dout, num_col_dims);
|
||||
auto place = context.GetEigenDevice<Place>();
|
||||
|
||||
if (dx) {
|
||||
dx->mutable_data<T>(context.GetPlace());
|
||||
EigenMatrix<T>::Reshape(*dx, num_col_dims).device(place) = out_grad;
|
||||
}
|
||||
|
||||
if (db) {
|
||||
db->mutable_data<T>(context.GetPlace());
|
||||
// https://eigen.tuxfamily.org/dox/unsupported/TensorBase_8h_source.html
|
||||
// colwise add
|
||||
Eigen::array<int, 1> dims{{0}}; /* dimension to reduce */
|
||||
EigenVector<T>::Flatten(*db).device(place) = out_grad.sum(dims);
|
||||
}
|
||||
}
|
||||
};
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -1,51 +0,0 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
class TestRowwiseAddOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "rowwise_add"
|
||||
self.inputs = {
|
||||
'X': np.random.uniform(0.1, 1, [5, 10]).astype("float32"),
|
||||
'b': np.random.uniform(0.1, 1, [10]).astype("float32")
|
||||
}
|
||||
self.outputs = {'Out': np.add(self.inputs['X'], self.inputs['b'])}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad_normal(self):
|
||||
self.check_grad(['X', 'b'], 'Out')
|
||||
|
||||
def test_check_grad_ingore_b(self):
|
||||
self.check_grad(['X'], 'Out', no_grad_set=set('b'))
|
||||
|
||||
def test_check_grad_ingore_x(self):
|
||||
self.check_grad(['b'], 'Out', no_grad_set=set('X'))
|
||||
|
||||
|
||||
class TestRowwiseAddOp2(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "rowwise_add"
|
||||
self.inputs = {
|
||||
'X': np.random.uniform(0.1, 1, [2, 3, 2, 5]).astype("float32"),
|
||||
'b': np.random.uniform(0.1, 1, [2, 5]).astype("float32")
|
||||
}
|
||||
self.outputs = {'Out': np.add(self.inputs['X'], self.inputs['b'])}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad_normal(self):
|
||||
self.check_grad(['X', 'b'], 'Out')
|
||||
|
||||
def test_check_grad_ignore_b(self):
|
||||
self.check_grad(['X'], 'Out', no_grad_set=set('b'))
|
||||
|
||||
def test_check_grad_ignore_x(self):
|
||||
self.check_grad(['b'], 'Out', no_grad_set=set('X'))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue