Merge remote-tracking branch 'origin/develop' into fix/reduce_op

mobile_baidu
Dong Zhihong 8 years ago
commit 60232d812c

2
.gitignore vendored

@ -21,7 +21,7 @@ third_party/
cmake-build-*
# generated while compiling
python/paddle/v2/framework/core.so
python/paddle/v2/fluid/core.so
paddle/pybind/pybind.h
CMakeFiles
cmake_install.cmake

@ -121,6 +121,7 @@ paddle_error paddle_matrix_get_shape(paddle_matrix mat,
paddle_matrix paddle_matrix_create_sparse(
uint64_t height, uint64_t width, uint64_t nnz, bool isBinary, bool useGpu) {
#ifndef PADDLE_MOBILE_INFERENCE
auto ptr = new paddle::capi::CMatrix();
ptr->mat = paddle::Matrix::createSparseMatrix(
height,
@ -131,6 +132,9 @@ paddle_matrix paddle_matrix_create_sparse(
false,
useGpu);
return ptr;
#else
return nullptr;
#endif
}
paddle_error paddle_matrix_sparse_copy_from(paddle_matrix mat,
@ -140,6 +144,7 @@ paddle_error paddle_matrix_sparse_copy_from(paddle_matrix mat,
uint64_t colSize,
float* valueArray,
uint64_t valueSize) {
#ifndef PADDLE_MOBILE_INFERENCE
if (mat == nullptr) return kPD_NULLPTR;
auto ptr = cast(mat);
if (rowArray == nullptr || colArray == nullptr ||
@ -160,4 +165,7 @@ paddle_error paddle_matrix_sparse_copy_from(paddle_matrix mat,
} else {
return kPD_NOT_SUPPORTED;
}
#else
return kPD_NOT_SUPPORTED;
#endif
}

@ -48,6 +48,7 @@ PD_API paddle_matrix paddle_matrix_create(uint64_t height,
* @param isBinary is binary (either 1 or 0 in matrix) or not.
* @param useGpu is using GPU or not.
* @return paddle_matrix.
* @note Mobile inference does not support this interface.
*/
PD_API paddle_matrix paddle_matrix_create_sparse(
uint64_t height, uint64_t width, uint64_t nnz, bool isBinary, bool useGpu);
@ -129,6 +130,7 @@ PD_API paddle_error paddle_matrix_get_shape(paddle_matrix mat,
* NULL if the matrix is binary.
* @param [in] valueSize length of value array. Zero if the matrix is binary.
* @return paddle_error
* @note Mobile inference does not support this interface.
*/
PD_API paddle_error paddle_matrix_sparse_copy_from(paddle_matrix mat,
int* rowArray,

@ -27,7 +27,9 @@ if(WITH_GPU)
set_source_files_properties(${CUDA_CXX_SOURCES}
PROPERTIES COMPILE_FLAGS "-D__NVCC__")
else()
if (NOT MOBILE_INFERENCE)
set(CUDA_CXX_SOURCES src/hl_warpctc_wrap.cc)
endif()
endif()
set(CUDA_CU_SOURCES

@ -18,7 +18,7 @@ limitations under the License. */
#include "hl_base.h"
/**
* @brief Maximum pool forward.
* @brief Maximum pool forward with Mask output.
*
* @param[in] frameCnt batch size of input image.
* @param[in] inputData input data.
@ -35,7 +35,7 @@ limitations under the License. */
* @param[in] paddingW padding width.
* @param[out] tgtData output data.
* @param[in] tgtStride stride between output data samples.
*
* @param[out] maskData the location indices of select max data.
*/
extern void hl_maxpool_forward(const int frameCnt,
const real* inputData,
@ -51,7 +51,8 @@ extern void hl_maxpool_forward(const int frameCnt,
const int paddingH,
const int paddingW,
real* tgtData,
const int tgtStride);
const int tgtStride,
real* maskData = NULL);
/**
* @brief Maximum pool backward.

@ -31,7 +31,8 @@ inline void hl_maxpool_forward(const int frameCnt,
const int paddingH,
const int paddingW,
real* tgtData,
const int tgtStride) {}
const int tgtStride,
real* MaskData) {}
inline void hl_maxpool_backward(const int frameCnt,
const real* inputData,

@ -31,7 +31,8 @@ __global__ void KeMaxPoolForward(const int nthreads,
const int offsetH,
const int offsetW,
real* tgtData,
const int tgtStride) {
const int tgtStride,
real* maskData) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
if (index < nthreads) {
int pw = index % pooledW;
@ -45,16 +46,22 @@ __global__ void KeMaxPoolForward(const int nthreads,
hstart = max(hstart, 0);
wstart = max(wstart, 0);
real maxval = -FLT_MAX;
int max_index = -1;
inputData += (frameNum * channels + c) * height * width;
for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) {
if (maxval < inputData[h * width + w])
maxval = inputData[h * width + w];
if (maxval < inputData[h * width + w]) {
max_index = h * width + w;
maxval = inputData[max_index];
}
}
}
int tgtIndex =
index % (pooledW * pooledH * channels) + frameNum * tgtStride;
tgtData[tgtIndex] = maxval;
if (maskData != NULL) {
maskData[tgtIndex] = max_index;
}
}
}
@ -72,7 +79,8 @@ void hl_maxpool_forward(const int frameCnt,
const int paddingH,
const int paddingW,
real* tgtData,
const int tgtStride) {
const int tgtStride,
real* maskData) {
int num_kernels = pooledH * pooledW * channels * frameCnt;
int blocks = (num_kernels + 1024 - 1) / 1024;
dim3 threads(1024, 1);
@ -92,7 +100,8 @@ void hl_maxpool_forward(const int frameCnt,
paddingH,
paddingW,
tgtData,
tgtStride);
tgtStride,
maskData);
CHECK_SYNC("hl_maxpool_forward failed");
}

@ -377,6 +377,12 @@ std::vector<std::unique_ptr<OpDescBind>> MakeOpGrad(
return grad_op_descs;
}
static BlockDescBind* CreateStepBlock(
ProgramDescBind& program_desc,
std::unordered_set<std::string>* no_grad_vars,
std::unordered_map<std::string, std::string>* grad_to_var,
int step_block_idx);
std::vector<std::unique_ptr<OpDescBind>> MakeBlockBackward(
ProgramDescBind& program_desc, int block_idx,
std::unordered_set<std::string>* no_grad_vars,
@ -392,13 +398,13 @@ std::vector<std::unique_ptr<OpDescBind>> MakeBlockBackward(
if ((*it)->Type() == "recurrent") {
int step_block_idx = (*it)->GetBlockAttr("step_block");
auto backward_block_op_descs = MakeBlockBackward(
program_desc, step_block_idx, no_grad_vars, grad_to_var);
BlockDescBind* backward_block = CreateStepBlock(
program_desc, no_grad_vars, grad_to_var, step_block_idx);
op_grads = MakeOpGrad(*it, no_grad_vars, grad_to_var, {backward_block});
} else if ((*it)->Type() == "conditional_block") {
BlockDescBind* backward_block =
program_desc.AppendBlock(*program_desc.MutableBlock(step_block_idx));
for (auto& ptr : backward_block_op_descs) {
backward_block->AppendAllocatedOp(std::move(ptr));
}
CreateStepBlock(program_desc, no_grad_vars, grad_to_var,
(*it)->GetBlockAttr("block"));
op_grads = MakeOpGrad(*it, no_grad_vars, grad_to_var, {backward_block});
} else {
op_grads = MakeOpGrad(*it, no_grad_vars, grad_to_var);
@ -449,6 +455,21 @@ std::vector<std::unique_ptr<OpDescBind>> MakeBlockBackward(
return backward_descs;
}
static BlockDescBind* CreateStepBlock(
ProgramDescBind& program_desc,
std::unordered_set<std::string>* no_grad_vars,
std::unordered_map<std::string, std::string>* grad_to_var,
int step_block_idx) {
auto backward_block_op_descs = MakeBlockBackward(program_desc, step_block_idx,
no_grad_vars, grad_to_var);
BlockDescBind* backward_block =
program_desc.AppendBlock(*program_desc.MutableBlock(step_block_idx));
for (auto& ptr : backward_block_op_descs) {
backward_block->AppendAllocatedOp(move(ptr));
}
return backward_block;
}
ParamGradInfoMap AppendBackward(
ProgramDescBind& program_desc, const VarDescBind& target,
const std::unordered_set<std::string>& no_grad_vars) {

@ -27,10 +27,32 @@ inline VarDesc::VarType ToVarType(std::type_index type) {
return VarDesc_VarType_LOD_RANK_TABLE;
} else if (type.hash_code() == typeid(LoDTensorArray).hash_code()) {
return VarDesc_VarType_LOD_TENSOR_ARRAY;
} else if (type.hash_code() == typeid(SelectedRows).hash_code()) {
return VarDesc_VarType_SELECTED_ROWS;
} else {
PADDLE_THROW("ToVarType:Unsupported type %s", type.name());
}
}
template <typename Visitor>
inline void VisitVarType(const Variable& var, Visitor visitor) {
switch (ToVarType(var.Type())) {
case VarDesc_VarType_LOD_TENSOR:
visitor(var.Get<framework::LoDTensor>());
return;
case VarDesc_VarType_LOD_RANK_TABLE:
visitor(var.Get<LoDRankTable>());
return;
case VarDesc_VarType_LOD_TENSOR_ARRAY:
visitor(var.Get<LoDTensorArray>());
return;
case VarDesc_VarType_SELECTED_ROWS:
visitor(var.Get<SelectedRows>());
return;
default:
PADDLE_THROW("Not supported visit type, %d", ToVarType(var.Type()));
}
}
} // namespace framework
} // namespace paddle

@ -61,6 +61,7 @@ public:
// function arguments
strides_ = config.get<std::vector<size_t>>("strides");
paddings_ = config.get<std::vector<size_t>>("paddings");
dilations_ = config.get<std::vector<size_t>>("dilations");
groups_ = config.get<size_t>("groups");
// number of inputs and outputs
@ -118,6 +119,7 @@ protected:
std::vector<size_t> strides_;
std::vector<size_t> paddings_;
std::vector<size_t> dilations_;
/// Group size, refer to grouped convolution in
/// Alex Krizhevsky's paper: when group=2, the first half of the
@ -133,6 +135,10 @@ protected:
inline int paddingW() const { return paddings_[1]; }
inline int dilationH() const { return dilations_[0]; }
inline int dilationW() const { return dilations_[1]; }
// A temporary memory in convolution calculation.
MemoryHandlePtr memory_;

@ -79,45 +79,59 @@ void Convolution(const std::string& conv1,
if (outputChannels < inputChannels) continue;
for (size_t stride : {1, 2}) {
for (size_t padding : {0, 1}) {
if (padding >= filterSize) break;
for (size_t dilation : {1, 3}) {
if (padding >= filterSize) break;
size_t filterS = (filterSize - 1) * dilation + 1;
// NNPACK only supports stride = 1 if batchSize > 1
if ((conv1 == "NNPACKConv-CPU" || conv2 == "NNPACKConv-CPU") &&
batchSize > 1 && stride > 1)
break;
if (inputSize + 2 * padding < filterS) break;
size_t outputSize =
(inputSize - filterSize + 2 * padding + stride) / stride;
VLOG(3) << " batchSize=" << batchSize
<< " inputChannels=" << inputChannels
<< " inputHeight=" << inputSize
<< " inputWidth=" << inputSize
<< " outputChannels=" << outputChannels
<< " filterHeight=" << filterSize
<< " filterWidth=" << filterSize
<< " outputHeight=" << outputSize
<< " outputWidth=" << outputSize << " stride=" << stride
<< " padding=" << padding;
if ((conv1 == "NaiveConv-CPU" || conv2 == "NaiveConv-CPU" ||
conv1 == "NNPACKConv-CPU" ||
conv2 == "NNPACKConv-CPU") &&
dilation > 1)
break;
std::vector<size_t> paddings = {padding, padding};
std::vector<size_t> strides = {stride, stride};
Compare2Function<DType1, DType2> test(
conv1,
conv2,
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("groups", (size_t)1)
.set("algo", (std::string) "auto"));
// NNPACK only supports stride = 1 if batchSize > 1
if ((conv1 == "NNPACKConv-CPU" ||
conv2 == "NNPACKConv-CPU") &&
batchSize > 1 && stride > 1)
break;
TensorShape input{
batchSize, inputChannels, inputSize, inputSize};
TensorShape filter{
outputChannels, inputChannels, filterSize, filterSize};
TensorShape output{
batchSize, outputChannels, outputSize, outputSize};
size_t outputSize =
(inputSize - filterS + 2 * padding + stride) / stride;
VLOG(3) << " batchSize=" << batchSize
<< " inputChannels=" << inputChannels
<< " inputHeight=" << inputSize
<< " inputWidth=" << inputSize
<< " outputChannels=" << outputChannels
<< " filterHeight=" << filterSize
<< " filterWidth=" << filterSize
<< " outputHeight=" << outputSize
<< " outputWidth=" << outputSize
<< " stride=" << stride << " padding=" << padding;
function(test, input, filter, output);
std::vector<size_t> paddings = {padding, padding};
std::vector<size_t> strides = {stride, stride};
std::vector<size_t> dilations = {dilation, dilation};
Compare2Function<DType1, DType2> test(
conv1,
conv2,
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("dilations", dilations)
.set("groups", (size_t)1)
.set("algo", (std::string) "auto"));
TensorShape input{
batchSize, inputChannels, inputSize, inputSize};
TensorShape filter{
outputChannels, inputChannels, filterSize, filterSize};
TensorShape output{
batchSize, outputChannels, outputSize, outputSize};
function(test, input, filter, output);
}
}
}
}
@ -144,6 +158,7 @@ void Convolution2(const std::string& conv1,
for (size_t outputChannels : {7}) {
size_t stride = 1;
size_t padding = 0;
size_t dilation = 1;
size_t outputHeight =
(inputHeight - filterHeight + 2 * padding + stride) /
stride;
@ -162,6 +177,7 @@ void Convolution2(const std::string& conv1,
std::vector<size_t> paddings = {padding, padding};
std::vector<size_t> strides = {stride, stride};
std::vector<size_t> dilations = {dilation, dilation};
Compare2Function<DType1, DType2> test(
conv1,
conv2,
@ -169,6 +185,7 @@ void Convolution2(const std::string& conv1,
.set("paddings", paddings)
.set("strides", strides)
.set("groups", (size_t)1)
.set("dilations", dilations)
.set("algo", (std::string) "auto"));
TensorShape input{
@ -223,6 +240,7 @@ void DepthwiseConvolution(const std::string& conv1,
std::vector<size_t> paddings = {padding, padding};
std::vector<size_t> strides = {stride, stride};
std::vector<size_t> dilations = {1, 1};
size_t groups = inputChannels;
Compare2Function<DType1, DType2> test(
conv1,
@ -231,6 +249,7 @@ void DepthwiseConvolution(const std::string& conv1,
.set("paddings", paddings)
.set("strides", strides)
.set("groups", groups)
.set("dilations", dilations)
.set("algo", (std::string) "auto"));
TensorShape input{

@ -100,7 +100,9 @@ public:
strideH(),
strideW(),
paddingH(),
paddingW());
paddingW(),
dilationH(),
dilationW());
} else {
colData = inputData + g * inputOffset;
}
@ -223,7 +225,9 @@ public:
strideH(),
strideW(),
paddingH(),
paddingW());
paddingW(),
dilationH(),
dilationW());
}
}
inputGrad += inputChannels * inputHeight * inputWidth;
@ -310,7 +314,9 @@ public:
strideH(),
strideW(),
paddingH(),
paddingW());
paddingW(),
dilationH(),
dilationW());
} else {
colData = inputData + g * inputOffset;
}

@ -78,7 +78,9 @@ public:
int strideHeight,
int strideWidth,
int paddingHeight,
int paddingWidth);
int paddingWidth,
int dilationHeight = 1,
int dilationWidth = 1);
};
template <ColFormat Format, DeviceType Device, class T>
@ -91,7 +93,9 @@ public:
int strideHeight,
int strideWidth,
int paddingHeight,
int paddingWidth);
int paddingWidth,
int dilationHeight = 1,
int dilationWidth = 1);
};
} // namespace paddle

@ -31,7 +31,9 @@ public:
int strideHeight,
int strideWidth,
int paddingHeight,
int paddingWidth) {
int paddingWidth,
int dilationHeight,
int dilationWidth) {
int inputChannels = imShape[0];
int inputHeight = imShape[1];
int inputWidth = imShape[2];
@ -47,8 +49,8 @@ public:
int c_im = c / filterWidth / filterHeight;
for (int h = 0; h < outputHeight; ++h) {
for (int w = 0; w < outputWidth; ++w) {
int imRowIdx = h * strideHeight + hOffset;
int imColIdx = w * strideWidth + wOffset;
int imRowIdx = h * strideHeight + hOffset * dilationHeight;
int imColIdx = w * strideWidth + wOffset * dilationWidth;
if ((imRowIdx - paddingHeight) < 0 ||
(imRowIdx - paddingHeight) >= inputHeight ||
(imColIdx - paddingWidth) < 0 ||
@ -81,7 +83,9 @@ public:
int strideHeight,
int strideWidth,
int paddingHeight,
int paddingWidth) {
int paddingWidth,
int dilationHeight,
int dilationWidth) {
int inputChannels = imShape[0];
int inputHeight = imShape[1];
int inputWidth = imShape[2];
@ -97,8 +101,8 @@ public:
int c_im = c / filterWidth / filterHeight;
for (int h = 0; h < outputHeight; ++h) {
for (int w = 0; w < outputWidth; ++w) {
int imRowIdx = h * strideHeight + hOffset;
int imColIdx = w * strideWidth + wOffset;
int imRowIdx = h * strideHeight + hOffset * dilationHeight;
int imColIdx = w * strideWidth + wOffset * dilationWidth;
if ((imRowIdx - paddingHeight) >= 0 &&
(imRowIdx - paddingHeight) < inputHeight &&
(imColIdx - paddingWidth) >= 0 &&
@ -134,7 +138,9 @@ public:
int strideHeight,
int strideWidth,
int paddingHeight,
int paddingWidth) {
int paddingWidth,
int dilationHeight = 1,
int dilationWidth = 1) {
int inputChannels = imShape[0];
int inputHeight = imShape[1];
int inputWidth = imShape[2];
@ -147,9 +153,10 @@ public:
for (int channel = 0; channel < inputChannels; ++channel) {
for (int filterH = 0; filterH < filterHeight; ++filterH) {
for (int filterW = 0; filterW < filterWidth; ++filterW) {
int imRowOffset =
outputH * strideHeight + filterH - paddingHeight;
int imColOffset = outputW * strideWidth + filterW - paddingWidth;
int imRowOffset = outputH * strideHeight +
filterH * dilationHeight - paddingHeight;
int imColOffset = outputW * strideWidth +
filterW * dilationWidth - paddingWidth;
int colDataOffset =
(((outputH * outputWidth + outputW) * inputChannels +
channel) *
@ -189,7 +196,9 @@ public:
int strideHeight,
int strideWidth,
int paddingHeight,
int paddingWidth) {
int paddingWidth,
int dilationHeight = 1,
int dilationWidth = 1) {
int inputChannels = imShape[0];
int inputHeight = imShape[1];
int inputWidth = imShape[2];
@ -202,9 +211,10 @@ public:
for (int channel = 0; channel < inputChannels; ++channel) {
for (int filterH = 0; filterH < filterHeight; ++filterH) {
for (int filterW = 0; filterW < filterWidth; ++filterW) {
int imRowOffset =
outputH * strideHeight + filterH - paddingHeight;
int imColOffset = outputW * strideWidth + filterW - paddingWidth;
int imRowOffset = outputH * strideHeight +
filterH * dilationHeight - paddingHeight;
int imColOffset = outputW * strideWidth +
filterW * dilationWidth - paddingWidth;
int colDataOffset =
(((outputH * outputWidth + outputW) * inputChannels +
channel) *

@ -28,6 +28,8 @@ __global__ void im2col(const T* data_im,
int strideW,
int paddingH,
int paddingW,
int dilationH,
int dilationW,
int height_col,
int width_col,
T* data_col) {
@ -44,8 +46,8 @@ __global__ void im2col(const T* data_im,
data_col += (channel_out * height_col + h_out) * width_col + w_out;
for (int i = 0; i < blockH; ++i) {
for (int j = 0; j < blockW; ++j) {
int rIdx = int(h_in + i);
int cIdx = int(w_in + j);
int rIdx = int(h_in + i * dilationH);
int cIdx = int(w_in + j * dilationW);
if ((rIdx - (int)paddingH) >= (int)height ||
(rIdx - (int)paddingH) < 0 ||
(cIdx - (int)paddingW) >= (int)width ||
@ -77,7 +79,9 @@ public:
int strideHeight,
int strideWidth,
int paddingHeight,
int paddingWidth) {
int paddingWidth,
int dilationHeight,
int dilationWidth) {
int inputChannels = imShape[0];
int inputHeight = imShape[1];
int inputWidth = imShape[2];
@ -102,6 +106,8 @@ public:
strideWidth,
paddingHeight,
paddingWidth,
dilationHeight,
dilationWidth,
outputHeight,
outputWidth,
colData);
@ -121,6 +127,8 @@ __global__ void col2im(size_t n,
size_t strideW,
size_t paddingH,
size_t paddingW,
size_t dilationH,
size_t dilationW,
size_t height_col,
size_t width_col,
T* data_im) {
@ -131,23 +139,34 @@ __global__ void col2im(size_t n,
int w = int(index % width);
int h = int((index / width) % height);
int c = int(index / (width * height));
int filterH = (blockH - 1) * dilationH + 1;
int filterW = (blockW - 1) * dilationW + 1;
if ((w - (int)paddingW) >= 0 &&
(w - (int)paddingW) < (width - 2 * paddingW) &&
(h - (int)paddingH) >= 0 && (h - paddingH) < (height - 2 * paddingH)) {
// compute the start and end of the output
int w_col_start =
(w < (int)blockW) ? 0 : (w - int(blockW)) / (int)strideW + 1;
(w < (int)filterW) ? 0 : (w - int(filterW)) / (int)strideW + 1;
int w_col_end = min((int)(w / (int)strideW + 1), (int)(width_col));
int h_col_start =
(h < (int)blockH) ? 0 : (h - (int)blockH) / (int)strideH + 1;
(h < (int)filterH) ? 0 : (h - (int)filterH) / (int)strideH + 1;
int h_col_end = min(int(h / strideH + 1), int(height_col));
for (int h_col = h_col_start; h_col < h_col_end; ++h_col) {
for (int w_col = w_col_start; w_col < w_col_end; ++w_col) {
// the col location: [c * width * height + h_out, w_out]
int c_col = int(c * blockH * blockW) +
(h - h_col * (int)strideH) * (int)blockW +
(w - w_col * (int)strideW);
val += data_col[(c_col * height_col + h_col) * width_col + w_col];
int h_k = (h - h_col * strideH);
int w_k = (w - w_col * strideW);
if (h_k % dilationH == 0 && w_k % dilationW == 0) {
h_k /= dilationH;
w_k /= dilationW;
int c_col =
(((c * blockH + h_k) * blockW + w_k) * height_col + h_col) *
width_col +
w_col;
val += data_col[c_col];
}
}
}
h -= paddingH;
@ -173,7 +192,9 @@ public:
int strideHeight,
int strideWidth,
int paddingHeight,
int paddingWidth) {
int paddingWidth,
int dilationHeight,
int dilationWidth) {
int inputChannels = imShape[0];
int inputHeight = imShape[1];
int inputWidth = imShape[2];
@ -205,6 +226,8 @@ public:
strideWidth,
paddingHeight,
paddingWidth,
dilationHeight,
dilationWidth,
outputHeight,
outputWidth,
imData);
@ -229,6 +252,8 @@ __global__ void im2colOCF(const T* imData,
int strideWidth,
int paddingHeight,
int paddingWidth,
int dilationHeight,
int dilationWidth,
int outputHeight,
int outputWidth) {
int swId = blockIdx.x;
@ -237,8 +262,10 @@ __global__ void im2colOCF(const T* imData,
channelId += blockDim.z) {
for (int idy = threadIdx.y; idy < filterHeight; idy += blockDim.y) {
for (int idx = threadIdx.x; idx < filterWidth; idx += blockDim.x) {
int widthOffset = idx + swId * strideWidth - paddingWidth;
int heightOffset = idy + shId * strideHeight - paddingHeight;
int widthOffset =
idx * dilationHeight + swId * strideWidth - paddingWidth;
int heightOffset =
idy * dilationWidth + shId * strideHeight - paddingHeight;
int imOffset = widthOffset + heightOffset * inputWidth +
channelId * inputHeight * inputWidth;
@ -273,7 +300,9 @@ public:
int strideHeight,
int strideWidth,
int paddingHeight,
int paddingWidth) {
int paddingWidth,
int dilationHeight,
int dilationWidth) {
int inputChannels = imShape[0];
int inputHeight = imShape[1];
int inputWidth = imShape[2];
@ -312,6 +341,8 @@ public:
strideWidth,
paddingHeight,
paddingWidth,
dilationHeight,
dilationWidth,
outputHeight,
outputWidth);
CHECK_SYNC("Im2ColFunctor GPU failed");
@ -330,6 +361,8 @@ __global__ void col2imOCF(T* imData,
int strideWidth,
int paddingHeight,
int paddingWidth,
int dilationHeight,
int dilationWidth,
int outputHeight,
int outputWidth) {
int swId = blockIdx.x;
@ -338,8 +371,10 @@ __global__ void col2imOCF(T* imData,
channelId += blockDim.z) {
for (int idy = threadIdx.y; idy < filterHeight; idy += blockDim.y) {
for (int idx = threadIdx.x; idx < filterWidth; idx += blockDim.x) {
int widthOffset = idx + swId * strideWidth - paddingWidth;
int heightOffset = idy + shId * strideHeight - paddingHeight;
int widthOffset =
idx * dilationWidth + swId * strideWidth - paddingWidth;
int heightOffset =
idy * dilationHeight + shId * strideHeight - paddingHeight;
int imOffset = widthOffset + heightOffset * inputWidth +
channelId * inputHeight * inputWidth;
@ -372,7 +407,9 @@ public:
int strideHeight,
int strideWidth,
int paddingHeight,
int paddingWidth) {
int paddingWidth,
int dilationHeight,
int dilationWidth) {
int inputChannels = imShape[0];
int inputHeight = imShape[1];
int inputWidth = imShape[2];
@ -411,6 +448,8 @@ public:
strideWidth,
paddingHeight,
paddingWidth,
dilationHeight,
dilationWidth,
outputHeight,
outputWidth);
CHECK_SYNC("Col2ImFunctor GPU failed");

@ -29,82 +29,98 @@ void TestIm2ColFunctor() {
for (size_t filterWidth : {3, 7}) {
for (size_t stride : {1, 2}) {
for (size_t padding : {0, 1}) {
if (inputHeight <= filterHeight || inputWidth <= filterWidth)
break;
if (padding >= filterHeight || padding >= filterWidth) break;
size_t outputHeight =
(inputHeight - filterHeight + 2 * padding + stride) /
stride;
size_t outputWidth =
(inputWidth - filterWidth + 2 * padding + stride) / stride;
TensorShape imShape =
TensorShape({channels, inputHeight, inputWidth});
TensorShape colShape1 = TensorShape({channels,
filterHeight,
filterWidth,
outputHeight,
outputWidth});
TensorShape colShape2 = TensorShape({outputHeight,
outputWidth,
channels,
filterHeight,
filterWidth});
size_t height = channels * filterHeight * filterWidth;
size_t width = outputHeight * outputWidth;
VectorPtr input1 = Vector::create(imShape.getElements(), false);
VectorPtr input2 = Vector::create(imShape.getElements(), false);
MatrixPtr output1 = Matrix::create(height, width, false, false);
MatrixPtr output2 = Matrix::create(width, height, false, false);
input1->uniform(0.001, 1);
input2->copyFrom(*input1);
Im2ColFunctor<kCFO, Device, T> im2Col1;
Im2ColFunctor<kOCF, Device, T> im2Col2;
im2Col1(input1->getData(),
imShape,
output1->getData(),
colShape1,
stride,
stride,
padding,
padding);
im2Col2(input2->getData(),
imShape,
output2->getData(),
colShape2,
stride,
stride,
padding,
padding);
// The transposition of the result of ColFormat == kCFO
// is equal to the result of ColFormat == kOCF.
MatrixPtr test;
output2->transpose(test, true);
autotest::TensorCheckErr(*output1, *test);
Col2ImFunctor<kCFO, Device, T> col2Im1;
Col2ImFunctor<kOCF, Device, T> col2Im2;
col2Im1(input1->getData(),
imShape,
output1->getData(),
colShape1,
stride,
stride,
padding,
padding);
col2Im2(input2->getData(),
imShape,
output2->getData(),
colShape2,
stride,
stride,
padding,
padding);
autotest::TensorCheckErr(*input1, *input2);
for (size_t dilation : {1, 3}) {
size_t filterSizeH = (filterHeight - 1) * dilation + 1;
size_t filterSizeW = (filterWidth - 1) * dilation + 1;
if (inputHeight + 2 * padding < filterSizeH ||
inputWidth + 2 * padding < filterSizeW)
break;
if (padding >= filterSizeH || padding >= filterSizeW) break;
size_t outputHeight =
(inputHeight - filterSizeH + 2 * padding) / stride + 1;
size_t outputWidth =
(inputWidth - filterSizeW + 2 * padding) / stride + 1;
TensorShape imShape =
TensorShape({channels, inputHeight, inputWidth});
TensorShape colShape1 = TensorShape({channels,
filterHeight,
filterWidth,
outputHeight,
outputWidth});
TensorShape colShape2 = TensorShape({outputHeight,
outputWidth,
channels,
filterHeight,
filterWidth});
size_t height = channels * filterHeight * filterWidth;
size_t width = outputHeight * outputWidth;
VectorPtr input1 =
Vector::create(imShape.getElements(), false);
VectorPtr input2 =
Vector::create(imShape.getElements(), false);
MatrixPtr output1 =
Matrix::create(height, width, false, false);
MatrixPtr output2 =
Matrix::create(width, height, false, false);
input1->uniform(0.001, 1);
input2->copyFrom(*input1);
Im2ColFunctor<kCFO, Device, T> im2Col1;
Im2ColFunctor<kOCF, Device, T> im2Col2;
im2Col1(input1->getData(),
imShape,
output1->getData(),
colShape1,
stride,
stride,
padding,
padding,
dilation,
dilation);
im2Col2(input2->getData(),
imShape,
output2->getData(),
colShape2,
stride,
stride,
padding,
padding,
dilation,
dilation);
// The transposition of the result of ColFormat == kCFO
// is equal to the result of ColFormat == kOCF.
MatrixPtr test;
output2->transpose(test, true);
autotest::TensorCheckErr(*output1, *test);
Col2ImFunctor<kCFO, Device, T> col2Im1;
Col2ImFunctor<kOCF, Device, T> col2Im2;
col2Im1(input1->getData(),
imShape,
output1->getData(),
colShape1,
stride,
stride,
padding,
padding,
dilation,
dilation);
col2Im2(input2->getData(),
imShape,
output2->getData(),
colShape2,
stride,
stride,
padding,
padding,
dilation,
dilation);
autotest::TensorCheckErr(*input1, *input2);
}
}
}
}

@ -85,9 +85,49 @@ if(MOBILE_INFERENCE)
gradientmachines/GradientMachineMode.cpp
gradientmachines/MultiGradientMachine.cpp)
# Remove useless layers
# Remove layers that used in training
list(REMOVE_ITEM GSERVER_SOURCES
layers/RecurrentLayerGroup.cpp)
layers/RecurrentLayerGroup.cpp
layers/CostLayer.cpp
layers/MultiBoxLossLayer.cpp
layers/WarpCTCLayer.cpp
layers/CTCLayer.cpp
layers/LinearChainCTC.cpp
layers/PrintLayer.cpp)
list(REMOVE_ITEM GSERVER_SOURCES
layers/OuterProdLayer.cpp
layers/SumToOneNormLayer.cpp
layers/ConvShiftLayer.cpp
layers/InterpolationLayer.cpp
layers/AgentLayer.cpp
layers/DotMulOperator.cpp
layers/GruStepLayer.cpp
layers/LstmStepLayer.cpp
layers/ConvexCombinationLayer.cpp
layers/Conv3DLayer.cpp
layers/DeConv3DLayer.cpp
layers/CropLayer.cpp
layers/CrossEntropyOverBeam.cpp
layers/DataNormLayer.cpp
layers/FeatureMapExpandLayer.cpp
layers/HierarchicalSigmoidLayer.cpp
layers/MultinomialSampler.cpp
layers/NCELayer.cpp
layers/KmaxSeqScoreLayer.cpp
layers/MDLstmLayer.cpp
layers/MultiplexLayer.cpp
layers/PadLayer.cpp
layers/Pool3DLayer.cpp
layers/ResizeLayer.cpp
layers/RotateLayer.cpp
layers/RowConvLayer.cpp
layers/RowL2NormLayer.cpp
layers/SamplingIdLayer.cpp
layers/ScaleShiftLayer.cpp
layers/SelectiveFullyConnectedLayer.cpp
layers/SpatialPyramidPoolLayer.cpp
layers/BilinearInterpLayer.cpp
layers/ClipLayer.cpp)
endif()
if(WITH_GPU)

@ -16,7 +16,6 @@ limitations under the License. */
#include "NeuralNetwork.h"
#include "hl_gpu.h"
#include "paddle/gserver/layers/AgentLayer.h"
#include "paddle/utils/CustomStackTrace.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
@ -28,6 +27,7 @@ limitations under the License. */
#ifndef PADDLE_MOBILE_INFERENCE
#include "MultiNetwork.h"
#include "RecurrentGradientMachine.h"
#include "paddle/gserver/layers/AgentLayer.h"
#endif
namespace paddle {
@ -192,9 +192,11 @@ void NeuralNetwork::init(const ModelConfig& config,
void NeuralNetwork::connect(LayerPtr agentLayer,
LayerPtr realLayer,
int height) {
#ifndef PADDLE_MOBILE_INFERENCE
AgentLayer* agent = dynamic_cast<AgentLayer*>(agentLayer.get());
CHECK_NOTNULL(agent);
agent->setRealLayer(realLayer, height);
#endif
}
void NeuralNetwork::connect(std::string agentLayerName,

@ -79,6 +79,10 @@ bool ExpandConvLayer::init(const LayerMap &layerMap,
for (int i = 0; i < config_.inputs_size(); i++) {
std::vector<size_t> paddings = {(size_t)paddingY_[i], (size_t)padding_[i]};
std::vector<size_t> strides = {(size_t)strideY_[i], (size_t)stride_[i]};
std::vector<size_t> dilations = {(size_t)dilationY_[i],
(size_t)dilation_[i]};
bool useDilation = ((size_t)dilationY_[i] > 1 || (size_t)dilation_[i] > 1);
// Convolution Layer uses the GemmConv function by default.
convType = "GemmConv";
@ -97,13 +101,14 @@ bool ExpandConvLayer::init(const LayerMap &layerMap,
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
if ((filterSize_[i] == filterSizeY_[i]) &&
(filterSize_[i] == 3 || filterSize_[i] == 4) &&
(stride_[i] == strideY_[i]) && (stride_[i] == 1 || stride_[i] == 2)) {
(stride_[i] == strideY_[i]) && (stride_[i] == 1 || stride_[i] == 2) &&
!useDilation) {
convType = "NeonDepthwiseConv";
}
#endif
}
if (FLAGS_use_nnpack && !isDeconv_) {
if (FLAGS_use_nnpack && !isDeconv_ && !useDilation) {
createFunction(forward_,
"NNPACKConv",
FuncConfig()
@ -117,6 +122,7 @@ bool ExpandConvLayer::init(const LayerMap &layerMap,
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("dilations", dilations)
.set("groups", (size_t)groups_[i]));
createFunction(backward_,
@ -124,6 +130,7 @@ bool ExpandConvLayer::init(const LayerMap &layerMap,
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("dilations", dilations)
.set("groups", (size_t)groups_[i]));
createFunction(backward_,
@ -131,6 +138,7 @@ bool ExpandConvLayer::init(const LayerMap &layerMap,
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("dilations", dilations)
.set("groups", (size_t)groups_[i]));
}
}

@ -98,6 +98,7 @@ ClassRegistrar<Layer, LayerConfig> Layer::registrar_;
LayerPtr Layer::create(const LayerConfig& config) {
std::string type = config.type();
#ifndef PADDLE_MOBILE_INFERENCE
// NOTE: As following types have illegal character '-',
// they can not use REGISTER_LAYER to registrar.
// Besides, to fit with old training models,
@ -106,7 +107,6 @@ LayerPtr Layer::create(const LayerConfig& config) {
return LayerPtr(new MultiClassCrossEntropy(config));
else if (type == "rank-cost")
return LayerPtr(new RankingCost(config));
#ifndef PADDLE_MOBILE_INFERENCE
else if (type == "auc-validation")
return LayerPtr(new AucValidation(config));
else if (type == "pnpair-validation")

@ -54,7 +54,6 @@ void MKLDNNAddtoLayer::reshape(
ow = iw;
reshapeOutput(oh, ow);
resizeOutput(bs, oc * oh * ow);
printSizeInfo();
}
void MKLDNNAddtoLayer::resetFwd(std::vector<primitive>& pipeline,

@ -125,7 +125,6 @@ void MKLDNNBatchNormLayer::reshape(
<< "Input channel can not be changed";
reshapeOutput(oh, ow);
resizeOutput(bs, oc * oh * ow);
printSizeInfo();
}
void MKLDNNBatchNormLayer::resetFwd(std::vector<primitive>& pipeline,

@ -102,8 +102,6 @@ void MKLDNNConvLayer::reshape(
reshapeOutput(oh, ow);
resizeOutput(bs, oc * oh * ow);
printSizeInfo();
}
void MKLDNNConvLayer::resetFwd(std::vector<primitive>& pipeline,

@ -92,7 +92,7 @@ public:
void printSizeInfo() override {
MKLDNNLayer::printSizeInfo();
VLOG(MKLDNN_SIZES) << getName() << ": fh: " << fh_ << ", fw: " << fw_
<< ": ph: " << ph_ << ", pw: " << pw_ << ", sh: " << sh_
<< ", ph: " << ph_ << ", pw: " << pw_ << ", sh: " << sh_
<< ", sw: " << sw_ << ", dh: " << dh_ << ", dw: " << dw_;
}

@ -84,8 +84,6 @@ void MKLDNNFcLayer::reshape(
reshapeOutput(oh, ow);
resizeOutput(bs, oc);
printSizeInfo();
}
void MKLDNNFcLayer::resetFwd(std::vector<primitive>& pipeline,

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save