commit
6089b7c600
@ -0,0 +1,37 @@
|
||||
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from paddle.trainer_config_helpers.activations import *
|
||||
|
||||
__all__ = [
|
||||
"Base", "Tanh", "Sigmoid", "Softmax", "Identity", "Linear",
|
||||
'SequenceSoftmax', "Exp", "Relu", "BRelu", "SoftRelu", "STanh", "Abs",
|
||||
"Square", "Log"
|
||||
]
|
||||
|
||||
Base = BaseActivation
|
||||
Tanh = TanhActivation
|
||||
Sigmoid = SigmoidActivation
|
||||
Softmax = SoftmaxActivation
|
||||
SequenceSoftmax = SequenceSoftmaxActivation
|
||||
Identity = IdentityActivation
|
||||
Linear = Identity
|
||||
Relu = ReluActivation
|
||||
BRelu = BReluActivation
|
||||
SoftRelu = SoftReluActivation
|
||||
STanh = STanhActivation
|
||||
Abs = AbsActivation
|
||||
Square = SquareActivation
|
||||
Exp = ExpActivation
|
||||
Log = LogActivation
|
@ -0,0 +1,186 @@
|
||||
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Before this new package paddle.v2.layer, users would need to use functions
|
||||
in paddle.trainer_config_helpers.layers to configure networks.
|
||||
|
||||
The Old Way:
|
||||
=========
|
||||
This old way requires that the creation of a network be defined in a Python
|
||||
function, say network_config, and that this Python function being passed to
|
||||
paddle.trainer_config_helpers.parse_network_config for the creation of
|
||||
protobuf message description of this network.
|
||||
|
||||
```python
|
||||
def network_config():
|
||||
img = paddle.trainer_config_helpers.data_layer(name="pixel", size=784)
|
||||
inference = paddle.trainer_config_helpers.fc_layer(
|
||||
input=img,
|
||||
size=10,
|
||||
act=paddle.trainer_config_helpers.SoftmaxActivation())
|
||||
cost = paddle.trainer_config_helpers.classification_cost(
|
||||
input=inference,
|
||||
label=paddle.trainer_config_helpers.data_layer(name="label", size=10))
|
||||
|
||||
proto_desc = parse_network_config(network_config)
|
||||
```
|
||||
|
||||
When parse_network_config executes network_config, those layer definition
|
||||
functions like data_layer and fc_layer would change some Python global variables,
|
||||
so that after the execution, parse_network_config could collect information from
|
||||
these global variables and generates the protobuf message.
|
||||
|
||||
|
||||
|
||||
The New Way:
|
||||
=========
|
||||
In this PR, we define a function in paddle.v2.layer which creates a Python
|
||||
class for each layer creation function in paddle.trainer_config_helpers.layers.
|
||||
Users can use create a network as follows:
|
||||
|
||||
```python
|
||||
img = paddle.v2.layer.data(name="pixel", size=784)
|
||||
inference = paddle.v2.layer.fc(input=img, size=10, act=paddle.v2.layer.Softmax())
|
||||
cost = paddle.v2.layer.classification(
|
||||
input=inference,
|
||||
label=paddle.v2.layer.data(name="label", size=10))
|
||||
|
||||
parameters = paddle.v2.parameters.create(cost)
|
||||
```
|
||||
|
||||
This new way doesn't require those invocations to layer definition functions
|
||||
to be in a Python function but could be anywhere.
|
||||
|
||||
Also, the creation of a protobuf message is hidden in the invocation of
|
||||
paddle.v2.parameters.create, no longer exposed to users.
|
||||
"""
|
||||
|
||||
import paddle.trainer_config_helpers as conf_helps
|
||||
from paddle.trainer_config_helpers.config_parser_utils import \
|
||||
parse_network_config as __parse__
|
||||
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
|
||||
import collections
|
||||
|
||||
__all__ = [
|
||||
'parse_network', 'data', 'fc', 'max_id', 'classification_cost',
|
||||
'cross_entropy_cost'
|
||||
]
|
||||
|
||||
|
||||
def parse_network(*outputs):
|
||||
"""
|
||||
parse all output layers and then generate a model config proto.
|
||||
:param outputs:
|
||||
:return:
|
||||
"""
|
||||
|
||||
def __real_func__():
|
||||
context = dict()
|
||||
real_output = [each.to_proto(context=context) for each in outputs]
|
||||
conf_helps.outputs(real_output)
|
||||
|
||||
return __parse__(__real_func__)
|
||||
|
||||
|
||||
class Layer(object):
|
||||
def __init__(self, name, parent_layers):
|
||||
assert isinstance(parent_layers, dict)
|
||||
assert isinstance(name, basestring)
|
||||
self.name = name
|
||||
self.__parent_layers__ = parent_layers
|
||||
|
||||
def to_proto(self, context):
|
||||
"""
|
||||
function to set proto attribute
|
||||
"""
|
||||
kwargs = dict()
|
||||
for layer_name in self.__parent_layers__:
|
||||
if not isinstance(self.__parent_layers__[layer_name],
|
||||
collections.Sequence):
|
||||
v1_layer = self.__parent_layers__[layer_name].to_proto(
|
||||
context=context)
|
||||
else:
|
||||
v1_layer = map(lambda x: x.to_proto(context=context),
|
||||
self.__parent_layers__[layer_name])
|
||||
kwargs[layer_name] = v1_layer
|
||||
|
||||
if self.name not in context:
|
||||
context[self.name] = self.to_proto_impl(**kwargs)
|
||||
return context[self.name]
|
||||
|
||||
def to_proto_impl(self, **kwargs):
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
def __convert_to_v2__(method_name, name_prefix, parent_names):
|
||||
if name_prefix is not None:
|
||||
wrapper = wrap_name_default(name_prefix=name_prefix)
|
||||
else:
|
||||
wrapper = None
|
||||
|
||||
class V2LayerImpl(Layer):
|
||||
def __init__(self, name=None, **kwargs):
|
||||
parent_layers = dict()
|
||||
other_kwargs = dict()
|
||||
for pname in parent_names:
|
||||
parent_layers[pname] = kwargs[pname]
|
||||
|
||||
for key in kwargs.keys():
|
||||
if key not in parent_names:
|
||||
other_kwargs[key] = kwargs[key]
|
||||
|
||||
super(V2LayerImpl, self).__init__(name, parent_layers)
|
||||
self.__other_kwargs__ = other_kwargs
|
||||
|
||||
if wrapper is not None:
|
||||
__init__ = wrapper(__init__)
|
||||
|
||||
def to_proto_impl(self, **kwargs):
|
||||
args = dict()
|
||||
for each in kwargs:
|
||||
args[each] = kwargs[each]
|
||||
for each in self.__other_kwargs__:
|
||||
args[each] = self.__other_kwargs__[each]
|
||||
return getattr(conf_helps, method_name)(name=self.name, **args)
|
||||
|
||||
return V2LayerImpl
|
||||
|
||||
|
||||
data = __convert_to_v2__('data_layer', None, [])
|
||||
fc = __convert_to_v2__('fc_layer', name_prefix='fc', parent_names=['input'])
|
||||
max_id = __convert_to_v2__(
|
||||
'maxid_layer', name_prefix='maxid_layer', parent_names=['input'])
|
||||
classification_cost = __convert_to_v2__(
|
||||
'classification_cost',
|
||||
name_prefix='classification_cost',
|
||||
parent_names=['input', 'label'])
|
||||
cross_entropy_cost = __convert_to_v2__(
|
||||
'cross_entropy',
|
||||
name_prefix='cross_entropy',
|
||||
parent_names=['input', 'label'])
|
||||
|
||||
if __name__ == '__main__':
|
||||
pixel = data(name='pixel', size=784)
|
||||
label = data(name='label', size=10)
|
||||
hidden = fc(input=pixel, size=100, act=conf_helps.SigmoidActivation())
|
||||
inference = fc(input=hidden, size=10, act=conf_helps.SoftmaxActivation())
|
||||
maxid = max_id(input=inference)
|
||||
cost1 = classification_cost(input=inference, label=label)
|
||||
cost2 = cross_entropy_cost(input=inference, label=label)
|
||||
|
||||
print parse_network(cost1)
|
||||
print parse_network(cost2)
|
||||
print parse_network(cost1, cost2)
|
||||
print parse_network(cost2)
|
||||
print parse_network(inference, maxid)
|
Loading…
Reference in new issue