parent
4661f5589d
commit
60dda7bf9f
@ -0,0 +1,87 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
#include <thrust/random.h>
|
||||
#include <thrust/transform.h>
|
||||
#include "paddle/fluid/framework/op_registry.h"
|
||||
#include "paddle/fluid/framework/operator.h"
|
||||
|
||||
template <typename T>
|
||||
struct UniformGenerator {
|
||||
T min_, max_;
|
||||
unsigned int seed_;
|
||||
|
||||
__host__ __device__ UniformGenerator(T min, T max, int seed)
|
||||
: min_(min), max_(max), seed_(seed) {}
|
||||
|
||||
__host__ __device__ T operator()(const unsigned int n) const {
|
||||
thrust::minstd_rand rng;
|
||||
rng.seed(seed_);
|
||||
thrust::uniform_real_distribution<T> dist(min_, max_);
|
||||
rng.discard(n);
|
||||
return dist(rng);
|
||||
}
|
||||
};
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using Tensor = framework::Tensor;
|
||||
|
||||
template <typename T>
|
||||
class SamplingIdKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
const Tensor* input = context.Input<Tensor>("X");
|
||||
const int batch_size = static_cast<int>(input->dims()[0]);
|
||||
const int width = static_cast<int>(input->dims()[1]);
|
||||
|
||||
std::vector<T> ins_vector;
|
||||
framework::TensorToVector(*input, context.device_context(), &ins_vector);
|
||||
|
||||
unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
|
||||
if (seed == 0) {
|
||||
std::random_device rd;
|
||||
seed = rd();
|
||||
}
|
||||
T min = static_cast<T>(context.Attr<float>("min"));
|
||||
T max = static_cast<T>(context.Attr<float>("max"));
|
||||
|
||||
std::vector<T> ids(batch_size);
|
||||
for (size_t i = 0; i < batch_size; ++i) {
|
||||
T r = UniformGenerator<T>(min, max, seed);
|
||||
int idx = width - 1;
|
||||
for (int j = 0; j < width; ++j) {
|
||||
if ((r -= ins_vector[i * width + j]) < 0) {
|
||||
idx = j;
|
||||
break;
|
||||
}
|
||||
}
|
||||
ids[i] = ins_vector[i * width + idx];
|
||||
}
|
||||
|
||||
std::vector<int64_t> out_dim;
|
||||
out_dim.push_back(static_cast<int64_t>(batch_size));
|
||||
|
||||
Tensor* output = context.Output<Tensor>("Out");
|
||||
output->Resize(framework::make_ddim(out_dim));
|
||||
output->mutable_data<T>(context.GetPlace());
|
||||
framework::TensorFromVector(ids, context.device_context(), output);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
REGISTER_OP_CPU_KERNEL(sampling_id, paddle::operators::SamplingIdKernel<float>,
|
||||
paddle::operators::SamplingIdKernel<double>);
|
Loading…
Reference in new issue